1
|
ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater. J Colloid Interface Sci 2023; 630:573-585. [DOI: 10.1016/j.jcis.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
2
|
Adsorption of flavonoids with glycosides: design and synthesis of chitosan-functionalized microspheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Chen G, Zeng X, Huang J. Imidazole-modified polymers and their adsorption of salicylic acid from aqueous solution. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Xu H, Li X, Hao Y, Xu X, Zhang Y, Zhang J. Polyethyleneimine modified heterostructure porous polymer microspheres for efficient adsorption of acteoside. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sun Y, Gu Y, Zha Q. A novel surface imprinted resin for the selective removal of metal-complexed dyes from aqueous solution in batch experiments: ACB GGN as a representative contaminant. CHEMOSPHERE 2021; 280:130611. [PMID: 33934001 DOI: 10.1016/j.chemosphere.2021.130611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Metal-complexed dyes are harmful to the environment and human health because they contain heavy metals and complex organic ligands. It is difficult to separate and recover these dyes from wastewater owing to their complex components and poor selectivity of common adsorbents. In this study, a novel surface molecularly imprinted polymer (SMIP) was prepared using 4-vinyl pyridine as the functional monomer and polystyrene resin as the carrier. SMIP showed better adsorption performance than non-imprinted polymer (SNIP) in the whole pH range with the best adsorption capacity at pH 1.5. The correlation coefficients (R2) fitted by Langmuir and Temkin models were greater than 0.97, and the adsorption was a spontaneous exothermic process. The pseudo-second-order and Elovich models fitted the adsorption kinetic curves well. The adsorption capacity of SMIP was approximately 20% higher than that of SNIP in the salt concentration ranging from 2 to 80 mg/L. In selective adsorption experiments, the relative selectivity coefficients (I) of SMIP for competitors were all greater than 2.41, and the Cr (Ⅲ) components of ACB GGN played a more important role in the recognition performance of SMIP than the sulfonic groups. Adsorption mechanism tests revealed that although the adsorption of ACB GGN by SMIP mainly relied on electrostatic attraction, hydrophobic interactions, π-π conjugation, and Cr (Ⅲ) coordination were also involved. These results show that SMIP has excellent selective adsorption properties for ACB GGN and a promising application potential in the treatment of metal-complexed dye wastewater.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Qingyi Zha
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Zhao C, Yi Z, Xue Y, Guan Q, Li W. Constructing the single‐site of pyridine‐based organic compounds for acetylene hydrochlorination: From theory to experiment. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoyue Zhao
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China
| | - Zenghuimin Yi
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China
| | - Yinan Xue
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin China
| |
Collapse
|
7
|
Liu B, Liu J, Huang D, Pei D, Wei J, Di D. Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Polymer brush-grafted cotton fiber for the efficient removal of aromatic halogenated disinfection by-products in drinking water. J Colloid Interface Sci 2021; 597:66-74. [PMID: 33865079 DOI: 10.1016/j.jcis.2021.03.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Apart from the activated carbon, other functional adsorbents are usually not frequently reported for the removal of disinfection by-products (DBPs) in drinking water. In this study, a novel polymer brush-grafted cotton fiber was prepared and for the first time used as adsorbents for the efficient removal of aromatic halogenated DBPs in drinking water in the column adsorption mode. Poly (glycidyl methacrylate) (PGMA) was grafted onto the surface of cotton fibers via UV irradiation, and then diethylenetriamine was immobilized on the PGMA polymer brush through amination reaction to obtain the aminated cotton fibers (ACFs). The adsorption performance of the prepared ACF was investigated with eight aromatic halogenated DBPs via dynamic adsorption experiments. The results revealed that ACF showed significantly longer breakthrough point (38,500-225,500 BV) for aromatic halogenated DBPs compared with the granular activated carbon (150-500 BV). Thomas model was used to fit the breakthrough curves, and the theoretical value of the maximum adsorption capacity ranged from 14.76 to 89.47 mg/g. The enhanced adsorption performance of the ACF for aromatic halogenated DBPs was mainly due to the formation of hydrogen bonds. Additionally, the partially protonated amine groups also improved the adsorption performance. Furthermore, the ACF also showed remarkable stability and reusability.
Collapse
|
9
|
Sang Y, Cao Y, Wang L, Yan W, Chen T, Huang J, Liu YN. N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption. J Colloid Interface Sci 2021; 587:121-130. [DOI: 10.1016/j.jcis.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
|
10
|
Yuan X, Zhou F, Long F, Man R, Huang J. Polar modified dendritic post-cross-linked polymer for Cu 2+ adsorption. ENVIRONMENTAL TECHNOLOGY 2021; 42:1402-1410. [PMID: 31550211 DOI: 10.1080/09593330.2019.1669721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The polar modified dendritic post-cross-linked polymer, namely HCPD was synthesized and used for adsorptive removal of Cu2+ from aqueous solution. The results showed that 5.12 mmol/g of amino and 2.25 mmol/g of carbonyl groups were uploaded on the polymer and these groups were significantly beneficial for Cu2+ removal. The maximum capacity reached 157.8 mg/g at 313 K and increased as the temperature increased. The Langmuir model characterized the equilibrium data well and a chemical interaction was involved with the enthalpy change of 49.50 kJ/mol. The pseudo-second-order kinetic model described the kinetic data well and the intra-particle diffusion model was appropriate for characterizing the kinetic adsorption. HCPD could be easily regenerated and the regenerated polymers were effectively recycled for five times without significant loss of the equilibrium capacity. Moreover, Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) results revealed that the chelating coordination of the amino and carbonyl groups with Cu2+ was the main driving force for the adsorption.
Collapse
Affiliation(s)
- Xiaomi Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Fa Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Fang Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Ruilin Man
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| |
Collapse
|
11
|
Yao L, Zhang L, Long B, Dai Y, Ding Y. N-heterocyclic hyper-cross-linked polymers for rapid and efficient adsorption of organic pollutants from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Teng Q, Ma S, Ni M, Liu J, Yang J, Zhang D, Meng Q. Removal of wastewater phenolic compounds with triethylenetetramine functionalized polystyrene resin. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:440-453. [PMID: 32960790 DOI: 10.2166/wst.2020.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A polyamine functionalized polystyrene resin (PSATA) was prepared via condensation reaction of acetylated polystyrene resin with triethylenetetramine, which, upon NaBH4 reduction, produced PSATAR. In comparison with the PSATA, the PSATAR with more flexible amine groups shows improved structural properties, and the equilibrium adsorption capacities of phenol, 2-nitrophenol (ONP) and 2,4-dinitrophenol (DNP) in wastewater were up to 1.073, 1.832 and 1.901 mmol/g, respectively. Their adsorption isotherms fit well with the Freundlich model, indicating a multilayer, heterogeneous adsorption nature. Kinetic studies indicated that the adsorption of phenolic compounds conforms to the pseudo-second-order kinetics with the adsorption rate controlled by film diffusion for ONP and DNP, and intra-particle diffusion in the later stage for phenol.
Collapse
Affiliation(s)
- Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Shufeng Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Mengyi Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Jiang Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Jinlei Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Dianhong Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| | - Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China E-mail:
| |
Collapse
|
13
|
Yang J, Yu S, Chen W, Chen Y. Rhodamine B removal from aqueous solution by CT269DR resin: Static and dynamic study. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419887238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adsorption of Rhodamine B onto CT269DR resin has been studied through static and dynamic experiments. The effects of shaking speed, resin dosage, and pH on adsorption were investigated by static experiments. The external mass transfer rate remains substantially unchanged when the shaking speed exceeds 160 r min−1. The optimal pH range is 5–8, and an increase of resin dosage can directly improve the percentage of removal of Rhodamine B. The equilibrium isotherm data of Rhodamine B on CT269DR resin fit the Langmuir adsorption isotherm well. The thermodynamics parameters, Δ H = 69.93 kJ mol−1, Δ S = 326.73 J mol−1 K−1, and Δ G < 0, demonstrate that the adsorption of Rhodamine B onto CT269DR resin is spontaneous and endothermic. The pseudo first-order kinetic model can be successfully used to represent the adsorption process and the activation energy is 25.7 kJ mol−1. The dynamic experiments show that the breakthrough point is advanced when the flow rate increases and the bed adsorption capacity increases with increasing temperature. Furthermore, the desorption using the solution of 2% NaOH is suitable for desorption and reusing process, and scanning electron microscope (SEM) and fourier transform infrared spectroscopy (FT-IR) analysis reveals that used resin has good wear resistance and chemical stability. The results confirm that CT269DR resin can be employed as an efficient adsorbent for the removal of Rhodamine B from wastewater.
Collapse
Affiliation(s)
- Jinbei Yang
- Fuqing Branch of Fujian Normal University, China
| | - Shuyue Yu
- Fuqing Branch of Fujian Normal University, China
| | - Wentao Chen
- Fuqing Branch of Fujian Normal University, China
| | - Yibing Chen
- Fuqing Branch of Fujian Normal University, China
| |
Collapse
|
14
|
Abstract
The PVP and its derivatives have been broadly applied in polymers, organic
syntheses, and catalysis processes. The crosslinked PVP is a well-known polymer support
for numerous reagents and catalysts. Cross-linked PVPs are commercially available polymers
and have attracted much attention over the past due to their interesting properties
such as the facile functionalization, high accessibility of functional groups, being nonhygroscopic,
easy to prepare, easy filtration, and swelling in many organic solvents. A
brief explanation of the reported applications of PVPs in different fields followed by the
discussion on the implementation of methodologies for catalytic efficiency of PVP-based
reagents in the organic synthesis is included. The aim is to summarize the literature under
a few catalytic categories and to present each as a short scheme involving reaction conditions.
In the text, discussions on the synthesis and the structural determination of some typical polymeric reagents
are presented, and the mechanisms of some organic reactions are given. Where appropriate, advantages
of reagents in comparison with the previous reports are presented. This review does not include patent literature.
Collapse
Affiliation(s)
- Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hanna S. Abbo
- Department of Chemistry, University of Basrah, Basrah, Iraq
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
15
|
Wang X, Ou H, Huang J. One-pot synthesis of hyper-cross-linked polymers chemically modified with pyrrole, furan, and thiophene for phenol adsorption from aqueous solution. J Colloid Interface Sci 2019; 538:499-506. [DOI: 10.1016/j.jcis.2018.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022]
|