1
|
Zhang Z, Chai H, Zhan J, Liu B, Lin Y, Zhang W, Cui L, Qiu R, Huang Z. Electrochemically driven inactivation of harmful cyanobacteria assisted with the visible light photocatalyst of CeO 2-Fe 3O 4-CQDs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124423. [PMID: 39923618 DOI: 10.1016/j.jenvman.2025.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
The application of photoelectrocatalysis in the inactivation of algae is attracting growing attention. In this study, CeO2-Fe3O4-carbon quantum dots (CQDs) were prepared as particle electrodes to assess their effectiveness in inactivating cyanobacteria within a three-dimensional (3D) electrochemical system under visible light. The results showed that both algal cells and extracellular organic matter (EOM) could be efficiently removed. The incorporation of 10 mg/mL CQDs significantly boosts the efficiency of photoelectrocatalysis under the optimal conditions, where the CeO2-Fe3O4-CQDs concentration is 0.20 g/L, j = 21 mA/cm2, under a neutral pH. Notably, the CeO₂-Fe3O4-CQDs exhibit favorable electrochemical catalytic performance, outstanding photocurrent responsiveness, and efficient magnetic separation (for recyclability). The coexistence of Ce3+ and Ce4+ species gives rise to the formation of a redox couple (Ce3+/Ce4+) at the interface of CeO₂, thereby demonstrating favorable performance in terms of oxygen release and storage capabilities. The activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) confirm the apoptosis of algal cells. Hydroxyl radicals (•OH) and singlet oxygen (1O₂) are participated in the algae inactivation process, with 1O₂ playing a more prominent role. Our research clarifies the complex mechanisms of algal apoptosis and promotes practical algae inactivation from wastewater.
Collapse
Affiliation(s)
- Ze Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Hua Chai
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Jiehao Zhan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Boyang Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Yinhan Lin
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Wendi Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China.
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China.
| |
Collapse
|
2
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
3
|
Kim WT, Lee JW, An HE, Cho SH, Jeong S. Efficient Fluoride Wastewater Treatment Using Eco-Friendly Synthesized AlOOH. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2838. [PMID: 37947684 PMCID: PMC10648790 DOI: 10.3390/nano13212838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Fluoride ion is essential for health in small amounts, but excessive intake can be toxic. Meeting safety regulations for managing fluoride ion emissions from industrial facilities with both cost-effective and eco-friendly approaches is challenging. This study presents a solution through a chemical-free process, producing a boehmite (AlOOH) adsorbent on aluminum sheets. Utilizing cost-effective Al foil and DI water, rather than typical precursors, yields a substantial cost advantage. The optimized AlOOH adsorbent demonstrated a high fluoride ion removal rate of 91.0% in simulated wastewater with fluoride ion concentrations below 20 ppm and displayed a similar performance in industrial wastewater. Furthermore, the AlOOH adsorbent exhibited excellent reusability through a simple regeneration process and maintained stable performance across a wide pH range of 4 to 11, demonstrating its capability to adsorb fluoride ions under diverse conditions. The efficiency of the AlOOH adsorbent was validated by a high fluoride ion removal efficiency of 90.9% in a semi-batch mode flow cell, highlighting its potential applicability in engineered water treatment systems. Overall, the AlOOH adsorbent developed in this study offers a cost-effective, eco-friendly, and sustainable solution for effectively removing fluoride ion from surface waters and industrial wastewaters.
Collapse
Affiliation(s)
| | | | | | | | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.-T.K.); (J.-W.L.); (H.-E.A.); (S.-H.C.)
| |
Collapse
|
4
|
Zungu B, Kamdem Paumo H, Gaorongwe JL, Tsuene GN, Ruzvidzo O, Katata-Seru L. Zn nutrients-loaded chitosan nanocomposites and their efficacy as nanopriming agents for maize ( Zea mays) seeds. Front Chem 2023; 11:1243884. [PMID: 37638104 PMCID: PMC10457009 DOI: 10.3389/fchem.2023.1243884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Recent breakthroughs in agro-inputs research have led to the development of nanomaterials that can promote precision agriculture and better environmental security. The agricultural sector is increasingly facing the negative impacts of changing climates due to various stress conditions. To curb this scenario, economical and low-risk practices such as decreasing fertilizer inputs and seed priming have been promoted. In the current study, the H. odoratissimum aqueous extract was used to nucleate the Zn ionic species and grow the zinc oxide nanoparticles (ZnO NPs). The developed nanocomposites and their ionic zinc precursor were then integrated into tripolyphosphate (TPP)-crosslinked chitosan (CS/TPP) nanostructures by ionic gelation. Advanced physicochemical characterization techniques (SEM, EDS, TEM, DLS, FTIR, TGA, and XPS) were exploited to report the morphology, hydrodynamic size, surface charge, and structural organization of the developed nanomaterials. These revealed positively charged particles with hydrodynamic size in the 149-257 nm range. The NPs were used as priming agents for Zea mays seeds. At 0.04%, the ZnO-loaded CS/TPP NPs achieved higher root and shoot elongation in 10-day old seedlings compared to other treatments. The pristine CS/TPP NPs, Zn(II)-laden CS/TPP NPs, and ZnO-loaded CS/TPP NPs at 0.01% significantly promoted the early seedling development of seeds under salt stress. This represents the first report showing ZnO integrated chitosan nanocomposites as an auspicious nanopriming agent for stimulating the seed germination of maize. The study envisages offering perspectives on utilizing green nanotechnology to improve the early seedling development of maize. Furthermore, it has the potential to contribute towards UN SDG 2, thus addressing the threats to global food insecurity and doubling agricultural productivity by 2030.
Collapse
Affiliation(s)
- Bongiwe Zungu
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| | - Joseph Lesibe Gaorongwe
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Gaborone Neo Tsuene
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Oziniel Ruzvidzo
- Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Lebogang Katata-Seru
- Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa
| |
Collapse
|
5
|
Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
6
|
Pan S, Guo X, Li R, Hu H, Yuan J, Liu B, Hei S, Zhang Y. Activation of peroxymonosulfate via a novel UV/hydrated Fe(III) oxide coupling strategy for norfloxacin removal: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Jiang G, Jin L, Pan Q, Peng N, Meng Y, Huang L, Wang H. Structural modification of aluminum oxides for removing fluoride in water: crystal forms and metal ion doping. ENVIRONMENTAL TECHNOLOGY 2022; 43:3248-3261. [PMID: 33945450 DOI: 10.1080/09593330.2021.1921044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In this paper, the effect of different crystal forms of Al2O3 on fluoride removal was studied. All crystal forms of Al2O3 were based on the same boehmite precursor and were obtained using a hydrothermal and calcination method. γ-Al2O3 had higher fluoride removal performance (52.15 mg/g) compared with θ-Al2O3 and α-Al2O3. Density functional theory (DFT) calculations confirmed that fluoride removal was greatest for γ-Al2O3, followed by θ-Al2O3 and α-Al2O3, and γ-Al2O3 possessed the strongest fluoride binding energy (-3.93 eV). The typical adsorption behaviour was consistent with the Langmuir model and pseudo-second-order model, indicating chemical and monolayer adsorption. Different metal ions were used to modify γ-Al2O3, and lanthanum had the best effect. Lanthanum oxide was shown to play an important role in fluoride removal. The best La/Al doping ratio was 20 At%. The adsorption process of the composite was also consistent with chemical and monolayer adsorption. When the La/Al doping rate was 20%, the adsorption capacity reached 94.64 mg/g. Compared with γ-Al2O3 (1.39 × 10-7 m/s), the adsorption rate of 20La-Al2O3 was 3.93 × 10-7 m/s according to the mass transfer model. Furthermore, DFT was used to provide insight into the adsorption mechanism, which was mainly driven by electrostatic attraction and ion exchange.
Collapse
Affiliation(s)
- Guomin Jiang
- School of Material Science and Engineering, Central South University, Changsha, People's Republic of China
| | - Linfeng Jin
- School of Material Science and Engineering, Central South University, Changsha, People's Republic of China
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha, People's Republic of China
| | - Qinglin Pan
- School of Material Science and Engineering, Central South University, Changsha, People's Republic of China
| | - Ning Peng
- School of Material Science and Engineering, Central South University, Changsha, People's Republic of China
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha, People's Republic of China
| | - Yun Meng
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha, People's Republic of China
| | - Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha, People's Republic of China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha, People's Republic of China
| |
Collapse
|
8
|
Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, Guo Y, Babu Arulmani SR, Shao M, Zhang H. Applications of biomass-based materials to remove fluoride from wastewater: A review. CHEMOSPHERE 2022; 301:134679. [PMID: 35469899 DOI: 10.1016/j.chemosphere.2022.134679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is one of the essential trace elements for the human body, but excessive fluoride will cause serious environmental and health problems. This paper summarizes researches on the removal of fluoride from aqueous solutions using newly developed or improved biomass materials and biomass-like organic materials in recent years. These biomass materials are classified into chitosan, microorganisms, lignocellulose plant materials, animal attribute materials, biological carbonized materials and biomass-like organic materials, which are explained and analyzed. By comparing adsorption performance and mechanism of adsorbents for removing fluoride, it is found that carbonizing materials and modifying adsorbents with metal ions are more beneficial to improving adsorption efficiency and the adsorption mechanisms are various. The adsorption capacities are still considerable after regeneration. This paper not only reviews the properties of these materials for fluoride removal, but also focuses on the comparison of materials performance and fluoride removal mechanism. Herein, by discussing the improved adsorption performance and research technology development of biomass materials and biomass-like organic materials, various innovative ideas are provided for adsorbing and removing contaminants.
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Zhixuan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yian Wang
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yufang Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | | | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China.
| |
Collapse
|
9
|
Alhassan SI, Wang H, He Y, Yan L, Jiang Y, Wu B, Wang T, Gang H, Huang L, Jin L, Chen Y. Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F ─ removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128401. [PMID: 35149494 DOI: 10.1016/j.jhazmat.2022.128401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Bauxite is a widely available Al-O-rich mineral with great potential for abating fluoride. However, low adsorption capacity, a narrow workable pH range, and a lack of clarity on the best removal mechanism hinder its application. In this work, a highly efficient bauxite nanocomposite (Bx-Ce-La@500) was synthesized via doping and pyrolysis, and its fluoride adsorption in industrial wastewater was examined. Doping Ce/La synergistically improved the fluoride adsorption affinity of the composite (from pHPZC 8.0 ~ 10.0) and enhanced the •OH. The materials were characterized by SEM-EDS, BET, XRD, and TGA while XPS, FTIR, and DFT were used to investigate the mechanism of fluoride sorption. Results show that Bx-Ce-La@ 500 has a positive zeta potential of 26.3-23.1 mV from pH 1~ 10. The Langmuir model was the best fit with a maximum adsorption capacity of 88.13 mg/g and removal efficiency up to 100% in 50 ppm F- solution. The high F- removal was attributed to the enhanced surface affinity and the formation of adequate •OH on the material. Except for carbonate and phosphate ions, other ions exhibited negligible effects and the selective removal of F- in real wastewater was high. The main mechanism of adsorption was the ligand/ion exchange and electrostatic attraction.
Collapse
Affiliation(s)
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yuxin Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Ting Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Linfeng Jin
- School of Material Science and Engineering, Central South University, Changsha 410083, PR China.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States.
| |
Collapse
|
10
|
Olejarczyk M, Rykowska I, Urbaniak W. Management of Solid Waste Containing Fluoride-A Review. MATERIALS 2022; 15:ma15103461. [PMID: 35629486 PMCID: PMC9147173 DOI: 10.3390/ma15103461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Technological and economic development have influenced the amount of post-production waste. Post-industrial waste, generated in the most considerable amount, includes, among others, waste related to the mining, metallurgical, and energy industries. Various non-hazardous or hazardous wastes can be used to produce new construction materials after the “solidification/stabilization” processes. They can be used as admixtures or raw materials. However, the production of construction materials from various non-hazardous or hazardous waste materials is still very limited. In our opinion, special attention should be paid to waste containing fluoride, and the reuse of solid waste containing fluoride is a high priority today. Fluoride is one of the few trace elements that has received much attention due to its harmful effects on the environment and human and animal health. In addition to natural sources, industry, which discharges wastewater containing F− ions into surface waters, also increases fluoride concentration in waters and pollutes the environment. Therefore, developing effective and robust technologies to remove fluoride excess from the aquatic environment is becoming extremely important. This review aims to cover a wide variety of procedures that have been used to remove fluoride from drinking water and industrial wastewater. In addition, the ability to absorb fluoride, among others, by industrial by-products, agricultural waste, and biomass materials were reviewed.
Collapse
Affiliation(s)
- Małgorzata Olejarczyk
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
- Construction Company “Waciński” Witold Waciński, ul. Długa 15, 83-307 Kiełpino, Poland
| | - Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
| | - Włodzimierz Urbaniak
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.O.); (I.R.)
- Correspondence:
| |
Collapse
|
11
|
Aigbe UO, Osibote OA. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9640-9684. [PMID: 34997491 DOI: 10.1007/s11356-021-17571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Fluoride is an anionic pollutant found superfluous in surface or groundwater as a result of anthropogenic actions from improper disposal of industrial effluents. In drinking water, superfluous fluoride has been revealed to trigger severe health problems in humans. Hence, developing a comprehensive wastewater decontamination process for the effective management and preservation of water contaminated with fluoride is desirable, as clean water demand is anticipated to intensify considerably over the upcoming years. In this regard, there have been increased efforts by researchers to create novel magnetic metal oxide nanocomposites which are functionalized for the remediation of wastewater owing to their biocompatibility, cost-effectiveness, relative ease to recover and reuse, non-noxiousness, and ease to separate from solutions using a magnetic field. This review makes an all-inclusive effort to assess the effects of experimental factors on the sorption of fluoride employing magnetic metal oxide nanosorbents. The removal efficiency of fluoride ions onto magnetic metal oxides nanocomposites were largely influenced by the solution pH and ions co-existing with fluoride. Overall, it was noticed from the reviewed researches that the maximum sorption capacity using various metal oxides for fluoride sorption was in the order of aluminium oxides >cerium oxides > iron oxides > magnesium oxides> titanium oxides, and most sorption of fluoride ions was inhibited by the existence of phosphate trailed by sulphate. The mechanism of fluoride sorption onto various sorbents was due to ion exchange, electrostatic attraction, and complexation mechanism.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
12
|
Dong H, Tang H, Shi X, Yang W, Chen W, Li H, Zhao Y, Zhang Z, Hua M. Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger. CHEMOSPHERE 2022; 287:131932. [PMID: 34455122 DOI: 10.1016/j.chemosphere.2021.131932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Efficient elimination of fluoride from wastewater is an urgent need for ensuring water safety. In the present study, a stable and reusable nanocomposite (NCO@PAE) was synthesized by impregnating nanosized cerium oxides (NCO) inside a porous polystyrene anion exchanger (PAE) host for efficient fluoride removal from wastewater. The newly fabricated NCO@PAE exhibited excellent resistance to acid and alkali environment, allowing it to be utilized in a wide pH range (2-12). Fluoride uptake onto NCO@PAE was a pH-dependent process, which could reach the maximum capacity at pH 3.0. Compared with its host PAE, NCO@PAE showed conspicuous adsorption affinity towards fluoride in the coexistence of other competing anions at high concentrations. Adsorption kinetics confirmed its high efficiency for achieving equilibrium within 120 min. Fixed-bed adsorption runs demonstrated that the effective processing capacity of NCO@PAE for synthetic fluoride-containing wastewater (initial fluoride 2.5 mg/L) was about ~330 BV (bed volume), while only 22 BV for the host PAE. The exhausted NCO@PAE could be effectively revived by a simple in-situ desorption method for long-term cycle operation without conspicuous capacity loss. All the results indicated that NCO@PAE is a reliable and promising adsorbent for water defluoridation.
Collapse
Affiliation(s)
- Hao Dong
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Huan Tang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Xinxing Shi
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Wenlan Yang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China.
| | - Wenjing Chen
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Han Li
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Yu Zhao
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Zhengyong Zhang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
13
|
Biswas A, C P. Nanocomposite of Ceria and Trititanate Nanotubes as an Efficient Defluoridating Material for Real-Time Groundwater: Synthesis, Regeneration, and Leached Metal Risk Assessment. ACS OMEGA 2021; 6:31751-31764. [PMID: 34869998 PMCID: PMC8637972 DOI: 10.1021/acsomega.1c04424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Ceria-incorporated trititanate nanotube composite (CTNC) was synthesized via a simple two-step wet chemical route for efficient fluoride removal not only from synthetic water but also from groundwater. The synthesized nanomaterial was systematically characterized for its physical and chemical properties. CTNC was shown to be highly porous with a surface area of 267 m2/g. The high surface area exposed majority of its adsorption sites, that is, surface hydroxyl groups, for fluoride removal. The plausible adsorption mechanism deduced based on FTIR and XPS data showed that ion exchange between the surface hydroxyl groups and the fluoride ions in water played a vital role in defluoridation by CTNC. A novel approach was used to quantify the adsorption sites with the use of BET and thermogravimetric analysis. TEM images confirmed the morphology of CTNC to be nanotubes decorated with ceria particles. The analysis of treated water samples for the metal ion content was carried out by an ICP-MS technique. CTNC exhibited characteristics of an ideal adsorbent such as high adsorption capacity, faster kinetics, pH independent adsorption, good regeneration, and negligible leaching of metal ions into the effluent. These attractive characteristics enabled the applicability of CTNC for real-time use.
Collapse
|
14
|
Dutta S, Srivastava SK, Gupta B, Gupta AK. Hollow Polyaniline Microsphere/MnO 2/Fe 3O 4 Nanocomposites in Adsorptive Removal of Toxic Dyes from Contaminated Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54324-54338. [PMID: 34727690 DOI: 10.1021/acsami.1c15096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dyes are considered as recalcitrant compounds and are not easily removed through conventional water treatment processes. The present study demonstrated the fabrication of polyaniline hollow microsphere (PNHM)/MnO2/Fe3O4 composites by in situ deposition of MnO2 and Fe3O4 nanoparticles on the surface of PNHM. The physicochemical characteristics and adsorption behavior of the prepared PNHM/MnO2/Fe3O4 composites towards the removal of toxic methyl green (MG) and Congo red (CR) dyes have been investigated. The characterization study revealed the successful synthesis of the prepared PNHM/MnO2/Fe3O4 adsorbent with a high Brunauer-Emmett-Teller (BET) surface area of 191.79 m2/g. The batch adsorption study showed about 88 and 98% adsorption efficiencies for MG and CR dyes, respectively, at an optimum dose of 1 g/L of PNHM/MnO2/Fe3O4 at pH ∼6.75 at room temperature (303 ± 3 K). The adsorption phenomena of MG and CR dyes were well described by the Elovich and pseudo-second-order kinetics, respectively, and Freundlich isotherm model. The thermodynamics study shows that the adsorption reactions were endothermic and spontaneous in nature. The maximum adsorption capacity (Qmax) for MG and CR dyes was observed as 1142.13 and 599.49 mg/g, respectively. The responsible adsorption mechanisms involved in dye removal were electrostatic interaction, ion exchange, and the formation of the covalent bonds. The coexisting ion study revealed that the presence of phosphate co-ion considerably reduced the CR dye removal efficiency. However, the desorption-regeneration study demonstrated the successful reuse of the spent PNHM/MnO2/Fe3O4 material for the adsorption of MG and CR dyes for several cycles. Given the aforementioned findings, the PNHM/MnO2/Fe3O4 nanocomposites could be considered as a promising adsorbent for the remediation of dye-contaminated water.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
Rashid US, Das TK, Sakthivel TS, Seal S, Bezbaruah AN. GO-CeO₂ nanohybrid for ultra-rapid fluoride removal from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148547. [PMID: 34328953 DOI: 10.1016/j.scitotenv.2021.148547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
The presence of excess fluoride (F- > 1.5 mg/L) in drinking water affects more than 260 million people globally and leads to dental and skeletal fluorosis among other health problems. This study investigated fluoride removal by graphene oxide-ceria nanohybrid (GO-CeO2) and elucidated the mechanisms involved. The nanohybrid exhibited ultra-rapid kinetics for fluoride removal and the equilibrium (85% removal, 10 mg F-/L initial concentration) was achieved within 1 min which is one of the fastest kinetics for fluoride removal reported so far. Fluoride removal by the nanohybrid followed Langmuir isotherm with a maximum adsorption capacity of 8.61 mg/g at pH 6.5 and that increased to 16.07 mg/g when the pH was lowered to 4.0. Based on the experimental results and characterization data, we have postulated that both electrostatic interaction and surface complexation participated in the fluoride removal process. The O2- ions present in the CeO2 lattice were replaced by F- ions to make a coordination compound (complex). While both Ce4+ and Ce3+ were present in ceria nanoparticles (CeO2 NPs), Ce3+ participated in fluoride complexation. During fluoride removal by GO-CeO2, the GO sheets acted as electron mediators and help to reduce Ce4+ to Ce3+ at the CeO2 NPs-GO interface, and the additional Ce3+ enhanced fluoride removal by the nanohybrid.
Collapse
Affiliation(s)
- Umma S Rashid
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center (AMPAC), Nanoscience and Technology Center (NSTC), Materials Science and Engineering (MSE), University of Central Florida, Orlando, USA; College of Medicine, University of Central Florida, Orlando, FL 32826, USA.
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
16
|
Wan K, Huang L, Yan J, Ma B, Huang X, Luo Z, Zhang H, Xiao T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145535. [PMID: 33588221 DOI: 10.1016/j.scitotenv.2021.145535] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Many industries such as iron and steel metallurgy, copper and zinc smelting, the battery industry, and cement manufacturing industries discharge high concentrations of fluoride-containing wastewater into the environment. Subsequently, the discharge of high fluoride effluent serves as a threat to human life as well as the ecological ability to sustain life. This article analyses the advantages and drawbacks of some fluoride remediation technologies such as precipitation and flocculation, membrane technology, ion exchange technology, and adsorption technology. Among them, adsorption technology is considered the obvious choice and the best applicable technology. As such, several adsorbents with high fluoride adsorption capacity such as modified alumina, metal oxides, biomass, carbon-based materials, metal-organic frameworks, and other adsorption materials including their characteristics have been comprehensively summarized. Additionally, different adsorption conditions of the various adsorbents, such as pH, temperature, initial fluoride concentration, and contact time have been discussed in detail. The study found out that the composite synergy between different materials, morphological and structural control, and the strengthening of their functional groups can effectively improve the ability of the adsorbents for removing fluoride. This study has prospected the direction of various adsorbents for removing fluoride in wastewater, which would serve as guiding significance for future research in the field.
Collapse
Affiliation(s)
- Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Boyan Ma
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhixuan Luo
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Wang H, Han X, Chen Y, Guo W, Zheng W, Cai N, Guo Q, Zhao X, Wu F. Effects of F -, Cl -, Br -, NO 3-, and SO 42- on the colloidal stability of Fe 3O 4 nanoparticles in the aqueous phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143962. [PMID: 33316533 DOI: 10.1016/j.scitotenv.2020.143962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
The effect of ions on the colloidal behavior of magnetic nanoparticles (MNPs) is an important factor for determining the dispersibility of MNPs. Compared with the effects of cations and organic matter, the effect of anions on MNPs has rarely been studied. Hence, in this study, the effect of anions on the aggregation of Fe3O4 MNPs in the aqueous phase was investigated using F-, Cl-, Br-, NO3-, and SO42-. The results indicated that the effect of anions on the colloidal behavior of the MNPs varied widely depending on their valence state, concentration, hydration ability, solution pH, and the magnetic force between the MNPs. Specifically, at pH 5.0, the anions were mainly adsorbed on the particle surface by electrostatic attraction, decreasing the electrostatic repulsion between the MNPs and causing an aggregation of the particles in the order of SO42- > F- > Br- > Cl- ≈ NO3-. At pH 9.0, anions strengthened the suspension of the MNPs at low ionic strength (IS) (≤5); however, with increasing IS, an aggregation of the MNPs in the following order was formed: NO3- > Cl- > Br- ≥ F- > SO42-. This was a result of the combined effects of the IS of solution, hydrability, and polarizability of the anions. Furthermore, the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory can explain the colloidal behavior of MNPs in the presence of magnetic forces, but it fails to differentiate the MNP behaviors between monovalent anions because the effects of ionic hydrability and polarizability are not considered. Distinctively, the secondary minimum between the MNPs particles were induced via magnetic attraction and played a critical role in adjusting the colloidal stability of the MNPs. Overall, these results indicate that specific ionic effects and magnetic attraction are important for interpreting the colloidal stability of MNPs in aqueous conditions.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xuejiao Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Chen
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zheng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Nan Cai
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Qingwei Guo
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
19
|
Huang L, Yang Z, Li X, Hou L, Alhassan SI, Wang H. Synthesis of hierarchical hollow MIL-53(Al)-NH 2 as an adsorbent for removing fluoride: experimental and theoretical perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6886-6897. [PMID: 33010011 DOI: 10.1007/s11356-020-10975-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The MIL-53(Al)-NH2 was designed to remove fluoride with hierarchical hollow morphology. It was used as an adsorbent for fluoride removal at a wide pH range (1-12) due to the positive zeta potential of MIL-53(Al)-NH2. The pH did not significantly influence the fluoride adsorption into MIL-53(Al)-NH2. However, the adsorbent indicated good adsorption capacity with maximum adsorption of 1070.6 mg g-1. Different adsorption kinetic and thermodynamic models were investigated for MIL-53(Al)-NH2. The adsorption of fluoride into MIL-53(Al)-NH2 followed the pseudo-second-order model and a well-fitted Langmuir model indicating chemical and monolayer adsorption process. When mass transfer model was used at initial concentrations of 100 ppm and 1000 ppm, the rates of conversion were 8.4 × 10-8 and 4.7 × 10-8 m s-1. Moreover, anions such as [Formula: see text], [Formula: see text], [Formula: see text], Cl-, and Br- also had less effect on the adsorption of fluoride. Also, experimental and theoretical calculations on adsorption mechanism of MIL-53(Al)-NH2 revealed that the material had good stability and regenerative capacity using alum as regenerant. In a nutshell, the dominant crystal face (1 0 1) and adsorption sites Al, O, and N combined well with F-, HF, and HF2- through density functional theory. It opens a good way of designing hollow MOFs for adsorbing contaminants in wastewater.
Collapse
Affiliation(s)
- Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Xiaorui Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Lanjing Hou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Sikpaam Issaka Alhassan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China.
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410004, China.
| |
Collapse
|
20
|
Zirpe M, Bagla H, Thakur J. Adsorptive removal of fluoride using polymer-modified ceria nanoparticles: determination of equilibrium, kinetic and thermodynamic parameters. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1660674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Maheshwari Zirpe
- Department of Chemistry, C. K. Thakur A. C. S. college, New Panvel, Raigad, India
| | - Hemlata Bagla
- Nuclear and Radiochemistry Department, K.C. College, Mumbai, India
| | - Jyotsna Thakur
- Department of Chemistry, C. K. Thakur A. C. S. college, New Panvel, Raigad, India
| |
Collapse
|
21
|
Kanrar S, Ghosh A, Ghosh A, Mondal A, Sadhukhan M, Ghosh UC, Sasikumar P. One-pot synthesis of Cr(III)-incorporated Zr(IV) oxide for fluoride remediation: a lab to field performance evaluation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15029-15044. [PMID: 32065364 DOI: 10.1007/s11356-020-07980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
A low-cost Cr(III)-incorporated Zr(IV) bimetallic oxide (CZ) was synthesized by simple chemical precipitation method for removal of fluoride from contaminated water. The physicochemical properties of CZ before and after fluoride removal were established with several instrumental techniques such as TEM with elemental mapping, SEM with EDX, XRD, IR, XPS, zeta potential measurement, etc. Batch adsorption technique were carried out to understand the factors affecting fluoride adsorption, such as effects of initial pH, adsorbent dose, co-occurring ions, contact time, and temperature. The maximum adsorption capacity observed at pH between 5 and 7. The fluoride adsorption processes on CZ obeyed the pseudo-second-order rate equations and both Freundlich and DR isotherm models. The maximum adsorption capacity of 90.67 mg g-1 was obtained. The thermodynamic parameters ΔH0 (positive), ΔS0 (positive), and ΔG0 (negative) indicating the fluoride sorption system was endothermic, spontaneous, and feasible. The CZ also successfully used as fluoride adsorbent for real field contaminated water collected from the Machatora district, Bankura, West Bengal, India. Graphical abstract Schematic representation of CZ synthesis and its application for lab as well as field water purification purpose.
Collapse
Affiliation(s)
- Sarat Kanrar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Abir Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Ayan Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, 462066, Madhya Pradesh, India
| | - Mriganka Sadhukhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 751 005, India
| | - Uday Chand Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
22
|
Zhang Y, Jiang D, Wang Y, Zhang TC, Xiang G, Zhang YX, Yuan S. Core–Shell Structured Magnetic γ-Fe2O3@PANI Nanocomposites for Enhanced As(V) Adsorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Zhang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Debin Jiang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian C. Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Gang Xiang
- College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
| | - Yu-Xin Zhang
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. NANOSCALE 2020; 12:4790-4815. [PMID: 32073021 DOI: 10.1039/c9nr09274a] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
24
|
Tao W, Zhong H, Pan X, Wang P, Wang H, Huang L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121373. [PMID: 31607582 DOI: 10.1016/j.jhazmat.2019.121373] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 05/21/2023]
Abstract
In this paper, Ce-AlOOH were investigated to develop as an adsorbent for removing fluoride. Oxalic acid was selected as an effectively modified reagent to improve the performance of adsorption. Cerium existed in the form of CeO2 and kept good stability during the adsorption process through XRD, TEM, BET, Raman, and Infrared spectra. The adsorption capacity could be improved with the addition of cerium (62.8 mg/g). Specially, the oxalic acid modification significantly promoted the adsorption capacity to 90 mg/g. There adsorption isotherm and kinetics were estimated independently. These adsorption behaviors were in accordance with the Freundlich model and pseudo-second-order model, indicating that chemisorption was the rate-determining step. the obtained adsorbents all exhibited good recycling performance using oxalic acid as the regeneration reagent. The species of tetravalent cerium was the important adsorption sites. The mechanism was carefully explored by XPS analysis. The fluoride adsorption process can be ascribed to the combined effect of the electrostatic action, surface coordination, and ion exchange between M-OH and F-. Furthermore, modification of oxalic acid exhibited a new easier way to quickly increase M-OH content, which contributed to the dominated adsorption sites.
Collapse
Affiliation(s)
- Wen Tao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Xiangbo Pan
- Changsha neptunus pharmaceutical co, ltd, China
| | - Peng Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
25
|
Noby H, El-Shazly A, Elkady M, Ohshima M. Strong acid doping for the preparation of conductive polyaniline nanoflowers, nanotubes, and nanofibers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Ye C, Yan B, Ji X, Liao B, Gong R, Pei X, Liu G. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:366-373. [PMID: 31102844 DOI: 10.1016/j.ecoenv.2019.04.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Fluoride removal from aqueous solution by adsorption using fly ash cenospheres (FAC) modified with paper mill lime mud (LM) as composite adsorbent had been investigated. The characterization of FAC and composite adsorbent were analyzed by Scanning electron spectroscope (SEM), Energy dispersive spectrometer (EDS), Brunauer emmett teller (BET) and Fourier transform infrared (FTIR), which demonstrated that the porous structure of composite adsorbent was obtained after surface modification. Adsorption of fluoride on modified fly ash cenospheres was fitted with pseudo-second-order model and Langmuir model. Response surface methodology (RSM) was employed to investigate the effects of F- concentration, pH, adsorbent dosage and temperature on the removal efficiency. Analysis of variance (ANOVA) was used to test the adequacy of the mathematical models. The Nonelectrostatic model of modified fly ash cenospheres adsorbing fluoride was built through the Generalized composite method, indicating that two inner-spherical complexes, ≡SF and ≡SOHF-, were formed in the adsorption process by means of the ligand exchange and surface complexation. Optimization of the adsorption conditions enabled the realization of the practical needs for fluoride contaminated water.
Collapse
Affiliation(s)
- Changwen Ye
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bowen Yan
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xing Ji
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bing Liao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Rui Gong
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, PR China.
| |
Collapse
|
27
|
Precipitation Methods Using Calcium-Containing Ores for Fluoride Removal in Wastewater. MINERALS 2019. [DOI: 10.3390/min9090511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
F-containing wastewater does great harm to human health and the ecological environment and thus needs to be treated efficiently. In this paper, the new calcium-containing precipitant calcite and aided precipitant fluorite were adopted to purify F-containing wastewater. Relevant reaction conditions, such as reaction time, oscillation rate, dosage of hydrochloric acid, calcite dosage and the assisting sedimentation performance of fluorite, and action mechanism are analyzed. The experiment showed that the removal rate of fluoride in simulated wastewater reached 96.20%, when the reaction time, the dosage of calcite, the dosage of 5% dilute hydrochloric acid, and the oscillation rate was 30 min, 2 g/L, 21.76 g/L, and 160 r/min, respectively. Moreover, the removal rate of fluoride in the actual F-containing smelting wastewater reaches approximately 95% under the optimum condition of calcite dosage of 12 g/L, reaction time of 30 min, and oscillation rate of 160 r/min. The addition of fluorite significantly improves the sedimentation performance of the reactive precipitates. The experimental results showed that calcite and fluorite can effectively reduce the concentration of fluoride ions in F-containing wastewater and solve the problem of slow sedimentation of reactive precipitates.
Collapse
|
28
|
Fluoride in Drinking Water and Nanotechnological Approaches for Eliminating Excess Fluoride. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/2192383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arising awareness of health hazards due to long-term exposure of fluoride has led researchers to seek for more innovative strategies to eliminate excess fluoride in drinking water. Fluoride-bearing chemicals in both natural and anthropogenic sources contaminate drinking water, which mainly cause for human fluoride ingestion. Hence, developing sustainable approaches toward alleviation is essential. Among many emerging techniques of defluoridation, nanotechnological approaches stand out owing to its high efficiency, and hence, as in many areas, nanotechnology for excess fluoride removal in water is gaining ground compared to other conventional adsorbents and process. The present review focuses on some of the advanced and recent nanoadsorbents including their strengths and shortcomings (e.g., CNT, LDH, graphene-based nanomaterials, and magnetic nanomaterials) and other processes involving nanotechnology while discussing basic aspects of hydrochemistry of fluoride and geological conditions leading for water fluoride contamination. Considering all the findings in survey, it is evident that developing more sustainable techniques is essential rather than conducting batch-type experiments solely.
Collapse
|
29
|
|
30
|
Parashar K, Pillay K, Das R, Maity A. Fluoride Toxicity and Recent Advances in Water Defluoridation with Specific Emphasis on Nanotechnology. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|