1
|
Wei P, Duan Y, Wang C, Sun P, Sun N. Co-Assembled Supramolecular Organohydrogels of Amphiphilic Zwitterion and Polyoxometalate with Controlled Microstructures. Molecules 2024; 29:2286. [PMID: 38792147 PMCID: PMC11124011 DOI: 10.3390/molecules29102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.
Collapse
Affiliation(s)
- Peilin Wei
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Yu Duan
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Chen Wang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Panpan Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| |
Collapse
|
2
|
Gao B, Shi Z, Shi Z, Li J, Hu L, Zhu G. Electrolytic Graphene Encapsulated CeO 2 for Lithium-Sulfur Battery Interlayer Separator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12144-12152. [PMID: 37584308 DOI: 10.1021/acs.langmuir.3c01442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Rare earth elements and graphene composites exhibit better catalytic properties in energy storage materials. The introduction of rare earth oxide and graphene composites as functional layers into the separator to seal the "shuttle effect" formed by polysulfides during the discharge process has proven to be effective. In this study, we prepared CeO2/graphene composites (labeled as CeG) by intercalation exfoliation and in situ electrodeposition methods simultaneously, in which CeO2 was encapsulated in large folds of graphene, which exhibited good defect levels (ID/IG < 1) and its intrinsically superior physical structure acted as a shielding layer to hinder the shuttle of polysulfides, improving the cycling stability and rate of cell performance. The separator cell with CeG achieves an initial discharge specific capacity of 1133.5 mAh/g at 0.5C, excellent rate performance (978.5 mAh/g at 2C), and long cycling (790 mAh/g after 400 cycles).
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Zeyuan Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Zehao Shi
- School of Materials Science and Engineering Ocean University of China, Qingdao 266100, China
| | - Jiahao Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Liang Hu
- Shenyang Ligong University, Material Science and Engineering, Shenyang, Liaoning Province, 110159, China
| | - Guanglin Zhu
- Shenyang Ligong University, School of Equipment Engineering, no. 6 Nanping Central Road, Hunnan New District, Shenyang, Liaoning Province, 110159, China
| |
Collapse
|
3
|
Xu W, Cao JF, Zhang XP, Shu Y, Wang JH. The concurrent enrichment of glycoproteins and phosphoproteins with polyoxometalate-covalent organic framework conjugate as the adsorbent. J Chromatogr A 2022; 1675:463183. [DOI: 10.1016/j.chroma.2022.463183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
4
|
Correlation among copolyether spacers, molecular geometry and interfacial properties of extended surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shehzad F, Hussain SMS, Adewunmi AA, Mahboob A, Murtaza M, Kamal MS. Magnetic surfactants: A review of recent progress in synthesis and applications. Adv Colloid Interface Sci 2021; 293:102441. [PMID: 34051602 DOI: 10.1016/j.cis.2021.102441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Magnetic surfactants are a special class of surfactants with magneto-responsive properties. These surfactants possess lower critical micelle concentrations and are more effective in reducing surface tension as compared to conventional surfactants. Such surfactants' ability to manipulate self-assembly in a controlled way by tuning the magnetic field makes them an attractive choice for several applications, including drug delivery, catalysis, separation, oilfield, and water treatment. In this work, we reviewed the properties of magnetic surfactants and possible explanations of magnetic behavior. This article also covers the synthesis methods that can be used to synthesize different types of cationic, anionic, nonionic, and zwitterionic magnetic surfactants. The applications of magnetic surfactants in different fields such as biotechnology, water treatment, catalysis, and oilfield have been discussed in detail.
Collapse
Affiliation(s)
- Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Syed Muhammad Shakil Hussain
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Ahmad A Adewunmi
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Ahmad Mahboob
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Mobeen Murtaza
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Muhammad Shahzad Kamal
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia.
| |
Collapse
|
6
|
Molecular docking of polyoxometalates as potential α-glucosidase inhibitors. J Inorg Biochem 2019; 203:110914. [PMID: 31751818 DOI: 10.1016/j.jinorgbio.2019.110914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
α-Glucosidase is an important target enzyme for the treatment of type 2 diabetes in humans. In our previous studies, it was found that polyoxometalates exhibited an effective inhibitory effect on the activity of α-glucosidase, while polyoxometalates have the characteristics of structural diversity and unique properties. Herein, we investigated the inhibition of two different series of polyoxometalates on α-glucosidases by enzyme kinetics and molecular docking. The results demonstrated that all of the studied compounds had a significant inhibitory ability on α-glucosidase as compared with the positive control acarbose. H8[P2Mo17Cr(OH2)O61] reversibly inhibited α-glucosidase in a competitive manner with IC50 of 115.50 ± 1.64 μM and KI value of 44.31 μM. All other compounds reversibly inhibited enzymatic activity in a mixed manner. H6PMo9V3O40 and H8[P2Mo17Cu(OH2)O61] were the best inhibitors in the Keggin and Dawson series, respectively, with IC50 of 9.63 ± 0.43 and 40.13 ± 0.61 μM, respectively. We conducted molecular docking study and found that the compound and α-glucosidase were mainly non-covalently interacting with hydrogen bonds and van der Waals forces. This result further confirmed the inhibition mechanism of enzyme kinetic experiments.
Collapse
|
7
|
Lei N, Feng L, Chen X. Zwitterionic Surfactant Micelle-Directed Self-Assembly of Eu-Containing Polyoxometalate into Organized Nanobelts with Improved Emission and pH Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4370-4379. [PMID: 30813733 DOI: 10.1021/acs.langmuir.9b00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, hybrid coassembly between polyoxometalates (POMs) and cationic building blocks provides an efficient strategy to greatly optimize POMs' functionality as well as their aggregate structural diversity. Adaptive hybrid supramolecular materials with enhanced luminescence have then been obtained from lanthanide-containing POMs. In this work, a commercially available and pH-switchable zwitterionic surfactant, tetradecyldimethylamine oxide (C14DMAO), was chosen to coassemble with a lanthanide-containing anionic POM [Na9(EuW10O36)·32H2O, abbreviated as EuW10] in water. The much improved red-emitting luminescent nanobelts at a C14DMAO/EuW10 molar ratio ( R) of 20 were obtained, which exhibited longer luminescence lifetime and higher quantum yield compared with EuW10 aqueous solution. After careful characterization of morphology and structure of nanobelts, an unusual axial lamellar aggregation arrangement mechanism was proposed. It was the partial protonation of C14DMAO at the solution pH of about 6.5 that led to positively charged micelles, being bridged by anionic EuW10 clusters to aggregate into such novel nanobelts under the synergetic effects of appropriate electrostatic, hydrogen-bonding, and hydrophobic interactions. The resulted pH-responsive luminescent nanobelts and their aggregation model should offer attractive references for preparing smart optical supramolecular materials.
Collapse
Affiliation(s)
- Nana Lei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| | - Xiao Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , China
| |
Collapse
|