1
|
Xie L, Jiang N, Liu Y, Bai H, Wu X, Chen G, Zhang S, Wang S, Dang Q, Sun L, Wang X. Thermo-responsive hydrogel loading hypericin induces pro-inflammatory response against Trichinella spiralis infection via toll-like receptor 3 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156284. [PMID: 39608163 DOI: 10.1016/j.phymed.2024.156284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Trichinella spiralis can cause animal and human trichinellosis, which is fatal for human beings. Study demonstrated that toll-like receptor 3 (TLR3) agonist was effective in reducing trichinella infections. Hypericin (Hyp) has great potential in activating TLR3 and may be a favorable choice for immunotherapy of trichinellosis. However, its applications are hampered by poor water solubility and dose-dependent phototoxicity. PURPOSE This study aimed to overcome the disadvantage of Hyp by using thermo-responsive hydrogel, better exert its immunotherapeutic efficacy against T. spiralis by activating TLR3. STUDY DESIGN AND METHODS We used P(NIPAM-co-AM) hydrogel prepared by acrylamide (AM) and N-isopropylacrylamide (NIPAM) to load Hyp, and named P(NIPAM-co-AM)/Hyp. Subsequently, its lower critical solution temperature (LCST) characterization, biocompatibility, immunomodulatory activity via TLR3 signaling pathway, and therapeutic efficacy against T. spiralis were evaluated. RESULTS The study showed that the controllable drug release rate of P(NIPAM-co-AM)/Hyp owed to its remarkable temperature sensitivity. P(NIPAM-co-AM)/Hyp exhibited exceptional efficacy in activating the TLR3 signaling pathway and significantly promoting DC cells maturation. P(NIPAM-co-AM)/Hyp effectively elicited a robust pro-inflammatory immune response with up-regulation of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), interleukin-12 (IL-12) in T. spiralis-infected mice. Compared to Hyp and albendazole (ABZ), P(NIPAM-co-AM)/Hyp exhibited a significant decrease in the encysted muscle larvae number and histopathological destruction. The muscle larvae burden was dropped from 58,733 to 32,833 per mice at a dose of 10 mg/kg, with a reduction rate of 42.8 %. Moreover, the reduction rate increased to 64.30 % at a dose of 20 mg/kg. CONCLUSIONS This study confirms the therapeutic efficacy of P(NIPAM-co-AM)/Hyp as a TLR3 agonist and provides a new study direction for immunotherapy strategy and vaccine development by targeting parasites.
Collapse
Affiliation(s)
- Lingfeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiaoxia Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Saining Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Qianqian Dang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Dou R, Li Z, Zhu G, Lin C, Liu FX, Wang B. Operando Decoding Ion-Conductive Switch in Stimuli-Responsive Hydrogel by Nanodiamond-Based Quantum Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406944. [PMID: 39312463 DOI: 10.1002/advs.202406944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Thermal-responsive hydrogels are developed as ion-conductive switchs for energy storage devices, however, the molecule mechanism of switch on/off remains unclear. Here, poly(N-isopropylacrylamide-co-acrylamide) hydrogel is synthesized as a model material and nanodiamond (ND) based quantum sensing for phase change study is developed. First, micro-scale phase separation with cross-linked mesh structure after sol-gel transition is visualized in situ and water molecules are trapped by polymer chains and on a chemically "frozen" state. Then, the nano-scale inhomogeneous distributions of viscosity, thermal conductivity and ionic mobility in hydrogel at high temperature are observed by measuring the rotation, translation and zero-field splitting of NDs. Besides, the ionic mobility of hydrogel is found to be dependent not only on temperature but also on polymer concentration. These observations suggested that the physical "wall" induced by inhomogeneous phase separation at microscopic scale blocked the ion conduction pathways, providing a potential intrinsic explanation for ion migration shut-down of ionic hydrogels at high temperature.
Collapse
Affiliation(s)
- Ruqiang Dou
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Zan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Guoli Zhu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Physics and Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Arif M. Exploring microgel adsorption: synthesis, classification, and pollutant removal dynamics. RSC Adv 2024; 14:9445-9471. [PMID: 38516164 PMCID: PMC10951818 DOI: 10.1039/d4ra00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Microgels have gained significant importance for the removal of pollutants owing to their stimulus-responsive behavior, high stability, and reusable capacity. However, despite these advantages, several hurdles need to be overcome to fully maximize their potential as effective adsorbents for eradicating various contaminants from the environment, such as metallic cations, organic compounds, anions, harmful gases, and dyes. Therefore, a critical review on the adsorption of pollutants by microgels is needed. In this regard, this review presents the latest developments in the adsorptive properties of microgels. The synthetic methods, architectural structures, and stimulus-responsive behavior of microgels are explained in detail. In addition, this review explores various factors that directly influence the adsorption of pollutants by microgels, such as pH, feed composition, content of pollutants, content of comonomers, agitation time, temperature, microgel dose, nature of both adsorbates (pollutants) and adsorbents (microgels), nature of the medium, and ionic strength. Various adsorption isotherms are also explored together with the kinetic aspects of the adsorption process to provide a comprehensive understanding.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| |
Collapse
|
4
|
Synthesis of Ni Doped Iron Oxide Colloidal Nanocrystal Clusters using Poly(N-isopropylacrylamide) templates for efficient recovery of cefixime and methylene blue. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Semenova A, Vidallon MLP, Follink B, Brown PL, Tabor RF. Synthesis and Characterization of Polyethylenimine-Silica Nanocomposite Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:191-202. [PMID: 34932365 DOI: 10.1021/acs.langmuir.1c02393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel procedure for the synthesis of polyethylenimine (PEI)-silica nanocomposite particles with high adsorption capacities has been developed based on an emulsion templating concept. The exceptional chelating properties of PEI as the parent polymer for the particle core promote the binding abilities of the resulting composite for charged species. Further, the subsequent introduction of silica via the self-catalyzed hydrolysis of tetraethoxysilane facilitates production of robust composite particles with smooth surfaces, enabling potential use in multiphase environments. To enable tailored application in solid/liquid porous environments, the production of particles with reduced sizes was attempted by modulating the shear rates and surfactant concentrations during emulsification. The use of high-speed homogenization resulted in a substantial decrease in average particle size, while increasing surfactant loading only had a limited effect. All types of nanocomposites produced demonstrated excellent binding capacities for copper ions as a test solute. The maximum binding capacities of the PEI-silica nanocomposites of 210-250 mg/g are comparable to or exceed those of other copper binding materials, opening up great application potential in resources, chemical processing, and remediation industries.
Collapse
Affiliation(s)
- Alexandra Semenova
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| | | | - Bart Follink
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| | - Paul L Brown
- Bundoora Technical Development Centre, Rio Tinto, 1 Research Avenue, Bundoora 3083, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| |
Collapse
|
6
|
Peng R, Zhang J, Du C, Li Q, Hu A, Liu C, Chen S, Shan Y, Yin W. Investigation of the Release Mechanism and Mould Resistance of Citral-Loaded Bamboo Strips. Polymers (Basel) 2021; 13:polym13193314. [PMID: 34641130 PMCID: PMC8512208 DOI: 10.3390/polym13193314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, the sustained-release system loading citral was synthesised by using PNIPAm nanohydrogel as a carrier and analysed its drug-release kinetics and mechanism. Four release models, namely zero-order, first-order, Higuchi, and Peppas, were employed to fit the experimental data, and the underlying action mechanism was analysed. The optimised system was applied to treat a bamboo mould, followed by assessment of the mould-proof performance. Our experimental results revealed that the release kinetics equation of the system conformed to the first order; the higher the external temperature, the better the match was. In the release process, PNIPAm demonstrated a good protection and sustained-release effect on citral. Under the pressure of 0.5 MPa, immersion time of 120 min, and the system concentration ratio of 1, the optimal drug-loading parameters were obtained using the slow-release system with the best release parameters. Compared to the other conditions, bamboos treated with pressure impregnation demonstrated a better control effect on bamboo mould, while the control effect on Penicillium citrinum, Trichoderma viride, Aspergillus niger, and mixed mould was 100% after 28 days. Moreover, the structure and colour of bamboo remained unchanged during the entire process of mould control.
Collapse
|
7
|
Song X, Zhou J, Qiao C, Xu X, Zhao S, Liu H. Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. J Phys Chem B 2021; 125:2994-3004. [PMID: 33720720 DOI: 10.1021/acs.jpcb.1c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The engulfing of nanoparticles into microgels provides a versatile platform to design nano- and microstructured materials with various shape anisotropies and multifunctional properties. Manipulating the spontaneous engulfment process remains elusive. Herein, we report a mesoscopic simulation study on the engulfing behavior of nanoparticles into thermoresponsive microgels. The effects of the multiple parameters, including binding strength, temperature, and nanoparticle size, are examined systematically. Our simulation results disclose three engulfing states at different temperatures, namely full-engulfing, half-engulfing, and surface contact. The engulfing depth is determined by the complementary balance of interfacial elastocapillarity. Specifically, the van der Waals interaction of hybrid microgel-nanoparticle offers the capillary force while the internally networked structure of microgel reinforces the elasticity repulsion. Our study, validated by relevant experimental results, provides a mechanistic understanding of the interfacial elastocapillarity for nanoparticle-microgels.
Collapse
Affiliation(s)
- Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404020, China
| | - Jianzhuang Zhou
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chongzhi Qiao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Zhang S, Yu P, Zhang Y, Ma Z, Teng K, Hu X, Lu L, Zhang Y, Zhao Y, An Q. Remarkably Boosted Molecular Delivery Triggered by Combined Thermal and Flexoelectrical Field Dual Stimuli. ChemistrySelect 2020. [DOI: 10.1002/slct.202000423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Peng Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Yi Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Xiantong Hu
- Beijing Engineering Research Center of Orthopaedic ImplantsFourth Medical Center of CPLA General Hospital Beijing 100048 China
| | - Limei Lu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| | - Yantao Zhao
- Beijing Engineering Research Center of Orthopaedic ImplantsFourth Medical Center of CPLA General Hospital Beijing 100048 China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences Beijing 100083 China
| |
Collapse
|
9
|
Kambayashi M, Yamauchi N, Nakashima K, Hasegawa M, Hirayama Y, Suzuki T, Kobayashi Y. Silica coating of indium phosphide nanoparticles by a sol–gel method and their photobleaching properties. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Li X, Li X, Shi X, Peng M, Lu X. PNIPAM-based colloidal photonic crystals above phase transition temperature and its application in naked-eye glucose-detection. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Synthesis and characterization of poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-acrylamide) core – Silica shell nanoparticles by using reactive surfactant polyoxyethylene alkylphenyl ether ammonium sulfate. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Madkour M, Bumajdad A, Al-Sagheer F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv Colloid Interface Sci 2019; 270:38-53. [PMID: 31174003 DOI: 10.1016/j.cis.2019.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/28/2023]
Abstract
Colloidal synthesis of nanoparticles using polymeric stabilizers as a template of a structure directing agent provided a plethora of opportunities in fabricating nanoparticles (NPs) with controlled size, shape, composition and structural characteristics. To understand the complete potency of polymeric stabilizers during the synthesis of nanoparticles, the relationship between polymer characteristics such as structure, molecular weight and concentration and nanoparticles characteristics is discussed in depth. This review portrays the use of polymers to attain nanostructured materials via covalent and non-covalent approaches. These polymers can also serve as surfaces modifier as well as the growth regulators during the synthesis of nanomaterials. The effect provided by polymers that directs the formation of nanomaterials into desired forms is otherwise hard to achieve. We especially spotlight on the approaches for tuning the characteristic properties of nanoparticles via cautious choice of the polymer system with special focus to stimuli-responsive polymers. This review mainly focusses on answering the main challenging question; what is the ideal polymeric stabilizer system to obtain specific morphology, size and phase structure of nanoparticles? Such vital information will enable rational design of nanoparticles to meet specific needs for different applications.
Collapse
|
13
|
Qi X, Chen M, Qian Y, Liu M, Li Z, Shen L, Qin T, Zhao S, Zeng Q, Shen J. Construction of macroporous salecan polysaccharide-based adsorbents for wastewater remediation. Int J Biol Macromol 2019; 132:429-438. [DOI: 10.1016/j.ijbiomac.2019.03.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
14
|
Begum R, Farooqi ZH, Ahmed E, Sharif A, Wu W, Irfan A. Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Adv 2019; 9:13838-13854. [PMID: 35519604 PMCID: PMC9064016 DOI: 10.1039/c9ra00699k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in synthesis, characterization and applications of acrylamide based polymer microgels and their hybrids are discussed for further development in this area.
Collapse
Affiliation(s)
- Robina Begum
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
- Centre for Undergraduate Studies
| | | | - Ejaz Ahmed
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Ahsan Sharif
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ahmad Irfan
- Research Center for Advance Materials Science
- King Khalid University
- Abha 61413
- Saudi Arabia
- Department of Chemistry
| |
Collapse
|