1
|
Guo J, Li Y, Zhang Y, Ren J, Yu X, Cao X. Switchable Supramolecular Configurations of Al 3+/LysTPY Coordination Polymers in a Hydrogel Network Controlled by Ultrasound and Heat. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40079-40087. [PMID: 34379399 DOI: 10.1021/acsami.1c10150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination-driven self-assembly with controllable properties has attracted increasing interest because of its potential in biological events and material science. Herein, we report on the remote, instant, and switchable control of competitive coordination interactions via ultrasound and heat stimuli in a hydrogel network. Configurational coordination changes result in the transformation of blue-emissive and opaque Al3+-amide aggregations to yellow-green-emissive and transparent Al3+-terpyridine aggregations. Interestingly, circularly polarized luminescence "off-on" switches of the metallo-supramolecular assembly are also created by these configuration changes. Additionally, the impact of the stoichiometric ratio of Al3+ and LysTPY on the assembly is also studied in detail. With a higher content of Al3+, the hydrogel with branched and abundant junctions exhibited robust, self-healing, and self-supporting properties. This in-depth understanding of the coordination interaction adjustment will afford new insights into the preparation of stimuli-responsive metallogels.
Collapse
Affiliation(s)
- Jiangbo Guo
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajun Zhang
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Nanhu Road 237, Xinyang 464000, PR China
| |
Collapse
|
2
|
Argudo PG, Zhang N, Chen H, de Miguel G, Martín-Romero MT, Camacho L, Li MH, Giner-Casares JJ. Amphiphilic polymers for aggregation-induced emission at air/liquid interfaces. J Colloid Interface Sci 2021; 596:324-331. [PMID: 33839357 DOI: 10.1016/j.jcis.2021.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Polymersomes and related self-assembled nanostructures displaying Aggregation-Induced Emission (AIE) are highly relevant for plenty of applications in imaging, biology and functional devices. Experimentally simple, scalable and universal strategies for on-demand self-assembly of polymers rendering well-defined nanostructures are highly desirable. A purposefully designed combination of amphiphilic block copolymers including tunable lengths of hydrophilic polyethylene glycol (PEGm) and hydrophobic AIE polymer poly(tetraphenylethylene-trimethylenecarbonate) (P(TPE-TMC)n) has been studied at the air/liquid interface. The unique 2D assembly properties have been analyzed by thermodynamic measurements, UV-vis reflection spectroscopy and photoluminescence in combination with molecular dynamics simulations. The (PEG)m-b-P(TPE-TMC)n monolayers formed tunable 2D nanostructures self-assembled on demand by adjusting the available surface area. Tuning of the PEG length allows to modification of the area per polymer molecule at the air/liquid interface. Molecular detail on the arrangement of the polymer molecules and relevant molecular interactions has been convincingly described. AIE fluorescence at the air/liquid interface has been successfully achieved by the (PEG)m-b-P(TPE-TMC)n nanostructures. An experimentally simple 2D to 3D transition allowed to obtain 3D polymersomes in solution. This work suggests that engineered amphiphilic polymers for AIE may be suitable for selective 2D and 3D self-assembly for imaging and technological applications.
Collapse
Affiliation(s)
- Pablo G Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Nian Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France
| | - Gustavo de Miguel
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - María T Martín-Romero
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Camacho
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Min-Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China; Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris-UMR8247, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, Paris, France.
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
3
|
Liu W, Ye Z, Chen Q, Huang X, Shang Y, Liu H, Meng H, He Y, Dong Y. Effect of the Substituent Position on the Phase Behavior and Photoresponsive Dynamic Behavior of Mixed Systems of a Gemini Surfactant and trans-Methoxy Sodium Cinnamates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9518-9531. [PMID: 34333982 DOI: 10.1021/acs.langmuir.1c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mixed systems of the Gemini cationic surfactant trimethylene-1,3-bis (dodecyldimethylammonium bromide) (12-3-12·2Br-) and the photosensitive additives trans-methoxy sodium cinnamates with different substituent positions (trans-ortho-methoxy cinnamate, trans-OMCA; trans-meta-methoxy cinnamate, trans-MMCA; and trans-para-methoxy cinnamate, trans-PMCA) were selected for investigating the effects of the substituting position of methoxy on the system phase diagram and UV light-responsive behavior of the wormlike micelles. The differences in phase behaviors of the selected systems were analyzed by calculating the potential distribution, molecular volume, and free energy of solvation of cinnamates and the binding energies between photosensitive additives and the surfactant. The photoresponsive behaviors of wormlike micelle solutions formed in the selected systems were studied by the rheological method and UV-vis and H nuclear magnetic resonance (1H NMR) spectroscopy; the kinetics of photoisomerization of trans-OMCA, trans-MMCA, and trans-PMCA were studied by first-order derivative spectrophotometry. The results reveal that the methoxy substituent position has a great influence on the phase behavior and photosensitivity of the studied systems. In addition, the photoisomerization of the studied cinnamates follows the first-order opposite reaction laws; the different reaction rates play the decisive role in the photosensitivity of the wormlike micelles. This paper would afford a deeper understanding of the UV light-responsive mechanism at the molecular level and provide essential guidance in preparing smart materials with adjustable light sensitivity.
Collapse
Affiliation(s)
- Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Self-healable, Eu3+-based polymeric gels containing terpyridyl groups with tunable luminescence based on ion recognition. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Shen F, Wang T, Yu X, Li Y. Free radical oxidation reaction for selectively solvatochromic sensors with dynamic sensing ability. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Liu C, Zhang K, Sun Q, Li W. Bile acid-terpyridine conjugates: Steroidal skeleton controlled AIE effect and metal-tunable fluorescence and supramolecular assembly properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Khan A, Huang K, Sarwar MG, Cheng K, Li Z, Tuhin MO, Rabnawaz M. Self-healing and self-cleaning clear coating. J Colloid Interface Sci 2020; 577:311-318. [PMID: 32497916 DOI: 10.1016/j.jcis.2020.05.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Coatings exhibiting both self-cleaning and self-healing properties are envisioned for a wide range of applications. Herein we report a simple fabrication approach toward poly(urea-urethane) (PU) coatings having self-healing and self-cleaning properties. The self-cleaning component is a poly(dimethylsiloxane) (PDMS), which is affordable in cost and also has a lower environmental footprint relative to its fluorinated counterpart. The self-healing properties are imparted by dynamic urea bonds of the matrix. The obtained surfaces are evaluated for their anti-smudge properties such as water-, oil- and ink-repellency, as well as optical properties. The self-healing properties of these coatings are evaluated by making scores with a doctor blade and monitoring the healing under different conditions using optical microscopy. The resultant coatings are also investigated for their good mechanical properties. The surface chemical compositions are determined x-ray photoelectron spectroscopy, while atomic force microscopy is used for microstructural analysis of these coatings.
Collapse
Affiliation(s)
- Ajmir Khan
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Kun Huang
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Mohammed G Sarwar
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Krystal Cheng
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Zhao Li
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Mohammad O Tuhin
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA
| | - Muhammad Rabnawaz
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, USA.
| |
Collapse
|
10
|
Light-responsive and self-healing behavior of azobenzene-based supramolecular hydrogels. J Colloid Interface Sci 2020; 568:16-24. [DOI: 10.1016/j.jcis.2020.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
|
11
|
Li X, Li Y, Feng G, Wang T, Ren J, Yu X. Emission Enhancement of Perylene‐Bisimide‐Based Organogel Triggered by Ultrasound. ChemistrySelect 2020. [DOI: 10.1002/slct.202000145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xin Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| | - Guoliang Feng
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| | - Tao Wang
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| | - Jujie Ren
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| | - Xudong Yu
- College of Science and Hebei Research Center of Pharmaceutical and Chemical EngineeringHebei University of Science and Technology Address Yuhua Road 70 Shijiazhuang 050080 PR China
| |
Collapse
|
12
|
Mahendar C, Kumar Y, Dixit MK, Dubey M. An Li +-enriched Co 2+-induced metallogel: a study on thixotropic rheological behaviour and conductance. SOFT MATTER 2020; 16:3436-3442. [PMID: 32196044 DOI: 10.1039/c9sm02544h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An alkali base and counterion-selective red metallogel (1% w/v) has been synthesized by mixing the adipic acid-derived ligand H2AL with LiOH, followed by the addition of 1 equivalent of Co(OAc)2 in DMF. The addition of Co(OAc)2 not only resulted in the formation of a 2 : 2 (M : L) complex, but also led to the consecutive steps of aggregation, fiber creation, entrapment of the solvent and eventually gelation. The metallogel formation and the mechanism behind gelation have been well characterized and established using various instrumental techniques such as FTIR spectroscopy, UV-vis spectroscopy, FE-SEM, TEM, PXRD, ESI-mass spectrometry, Job's plot and rheology analysis. Nyquist plots suggested a large decrease in the resistance value from 11.3 kΩ to 4.2 kΩ for the solution obtained from the ligand deprotonated by LiOH (AL2-) and Co(OAc)2 containing the metallogel. The Nyquist plot and resistance of the metallogel have also been studied under the influence of temperature and ultrasound stimuli. The extensive rheological measurements provide information about the strength of the gel network and the highly reversible nature and thixotropic behaviour of the metallogel.
Collapse
Affiliation(s)
- Chinthakuntla Mahendar
- Soft Materials Research Laboratory, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | | | | | | |
Collapse
|
13
|
Jiang J, Li J, Liu C, Liu R, Liang X, Zhou Y, Pan L, Chen H, Ma Z. Study on the substitution effects of zinc benzoate terpyridine complexes on photoluminescence, antiproliferative potential and DNA binding properties. J Biol Inorg Chem 2020; 25:311-324. [PMID: 32112291 DOI: 10.1007/s00775-020-01763-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Six zinc(II) complexes, [Zn(OCOPh)2LR] (R = 1, 2, 3, 4, 5, 6) were synthesized by the reaction of zinc benzoate and six para-substituted 4-phenyl-terpyridine complexes and their structures were confirmed by elemental analysis, FT-IR, 1H NMR and X-ray single crystal diffraction analysis. Their photoluminescent properties in solid and in solutions of DMSO were studied. Three human cancer cell lines were used for antiproliferative potential: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109) and human breast cancer cell line (MCF-7). The results have shown that these zinc complexes have good inhibitory effects on cancer cells, which are better than that of the commonly used clinical drug cisplatin. The ability of the complexes to binding to CT-DNA was studied by UV spectroscopy and fluorescence titration, while the interaction between the complexes and CT-DNA, AT6, GC6 short-chain DNA sequences and G-quadruplex were analyzed by circular dichroism (CD). It is found that these complexes can bind to DNA, and the binding mode is mainly intercalator. The docking of the complexes with the DNA fragment was simulated using molecular docking software. All the results clearly display that the substituents at these ligands of the complexes have the substitution effects on the properties of photoluminescence, antiproliferative potential and DNA binding study.
Collapse
Affiliation(s)
- Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengzhang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530004, PR China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
14
|
Zhang Z, Li Y, Geng L, Feng G, Ren J, Yu X. Healable, Phase-Selective, and White-Light-Emitting Titania Based Hybrid Lanthanide-Doped Metallogels. Inorg Chem 2020; 59:3974-3982. [DOI: 10.1021/acs.inorgchem.9b03662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zheng Zhang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Lijun Geng
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Guoliang Feng
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
15
|
Peng P, Li Y, Song W, Yu X. Self-healing organogels and hydrogels constructed by self-assembled bis-terpyridine complex with selective metal ions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Mac Cormack AS, Busch VM, Japas ML, Giovanetti L, Di Salvo F, Di Chenna PH. The effect of vicinal di-halo substituents on the organogelling properties of aromatic supramolecular gelators and their application as soft templates. NEW J CHEM 2020. [DOI: 10.1039/d0nj01440k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vicinal di-halo substituents have a determinant effect on the supramolecular self-assembly and properties of aromatic physical gelators with application as soft templates.
Collapse
Affiliation(s)
- Andrea S. Mac Cormack
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR)
- Departamento de Química Orgánica
- Facultad de Ciencias Exactas y Naturales
- Pabellón 2
| | - Verónica M. Busch
- Universidad de Buenos Aires
- Consejo Nacional de Investigaciones Científicas y Técnicas
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) Departamento de Química Orgánica y Departamento de Industrias
- Facultad de Ciencias Exactas y Naturales
- Ciudad Universitaria
| | - M. Laura Japas
- Comisión Nacional de Energía Atómica (CNEA)
- Gerencia Química
- Centro Atómico Constituyentes
- Av. Gral. Paz 1499, San Martín
- B1650KNA Buenos Aires
| | - Lisandro Giovanetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de la Plata
- CONICET
- La Plata
| | - Florencia Di Salvo
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Inorgánica
- Analítica y Química Física and CONICET
- Instituto de Química Física de los Materiales
| | - Pablo H. Di Chenna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR)
- Departamento de Química Orgánica
- Facultad de Ciencias Exactas y Naturales
- Pabellón 2
| |
Collapse
|
17
|
Geng L, Yu X, Wang Y, Li Y, Shen F, Ren J. Ultrasound-induced emission color and transmittance changes of organogel based on "trans-to-cis" isomerization. ULTRASONICS SONOCHEMISTRY 2019; 58:104659. [PMID: 31450314 DOI: 10.1016/j.ultsonch.2019.104659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Herein, instant and precise control of fluorescent emission color and transmittance could be carried out by ultrasound-promoted gel-to-gel transition of naphthalimide derivatives containing CN unit. It is proved that ultrasound triggered an irreversible and efficient configuration transformation of N1 from "trans to cis" form in gel state, which is stabilized by intermolecular hydrogen bonding interaction and not observed in the solution state.
Collapse
Affiliation(s)
- Lijun Geng
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Yanqiu Wang
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Fengjuan Shen
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
18
|
Synthesis, crystal structure, photophysical property and bioimaging application of a series of Zn(II) terpyridine complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Li Y, Zhang Z, Wang Y, Li H, Wang X. Phenanthroline derivative based europium(III) covalently bonded silica hybrid material for high-selectivity sensing of anion and small organic molecule. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Pang X, Ge J, Yu X, Li Y, Shen F, Wang Y, Ren J. An “off–on” fluorescent naphthalimide-based sensor for anions: its application in visual F− and AcO− discrimination in a self-assembled gel state. NEW J CHEM 2019. [DOI: 10.1039/c9nj01687b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we report a novel fluorescent organogelator that could discriminate F− from AcO− in both solution and gel systems.
Collapse
Affiliation(s)
- Xuelei Pang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Junqi Ge
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Xudong Yu
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Yajuan Li
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Fengjuan Shen
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Yanqiu Wang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Jujie Ren
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| |
Collapse
|
21
|
Mondal S, Raza R, Ghosh K. Cholesterol linked benzothiazole: a versatile gelator for detection of picric acid and metal ions such as Ag+, Hg2+, Fe3+ and Al3+ under different conditions. NEW J CHEM 2019. [DOI: 10.1039/c9nj01282f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of compound 1 with nitrophenols and metal ions has been studied in sol–gel medium. The nitrobenzene gel selectively recognizes picric acid, Ag+ and Hg2+ ions. In CH3CN, compound 1 further shows affinity towards Fe3+, Al3+ and Hg2+.
Collapse
Affiliation(s)
- Subhendu Mondal
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | - Rameez Raza
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | - Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|