1
|
Sagrafena I, Morin M, Paraskevopoulos G, Nilsson EJ, Hrdinová I, Kováčik A, Björklund S, Vávrová K. Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro. Biophys J 2024; 123:3951-3963. [PMID: 39390747 PMCID: PMC11617626 DOI: 10.1016/j.bpj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol %) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, x-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss and significantly higher model drug permeability compared to lipid films without UCA. Further, incorporation of UCA resulted in kinetically faster changes in electrical properties upon contact with aqueous solution compared with control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Irene Sagrafena
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maxim Morin
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Georgios Paraskevopoulos
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Emelie J Nilsson
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Iva Hrdinová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Sebastian Björklund
- Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden; Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Rasheed A, Parmar K, Jain S, Chakravortty D, Basu S. Weather-related changes in the dehydration of respiratory droplets on surfaces bolster bacterial endurance. J Colloid Interface Sci 2024; 674:653-662. [PMID: 38950464 DOI: 10.1016/j.jcis.2024.06.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
HYPOTHESIS The study shows for the first time a fivefold difference in the survivability of the bacterium Pseudomonas Aeruginosa (PA) in a realistic respiratory fluid droplet on fomites undergoing drying at different environmental conditions. For instance, in 2023, the annual average outdoor relative humidity (RH) and temperature in London (UK) is 71 % and 11 °C, whereas in New Delhi (India), it is 45 % and 26 °C, showing that disease spread from fomites could have a demographic dependence. Respiratory fluid droplet ejections containing pathogens on inanimate surfaces are crucial in disease spread, especially in nosocomial settings. However, the interplay between evaporation dynamics, internal fluid flow and precipitation and their collective influence on the distribution and survivability of pathogens at different environmental conditions are less known. EXPERIMENTS Shadowgraphy imaging is employed to study evaporation, and optical microscopy imaging is used for precipitation dynamics. Micro-particle image velocimetry (MicroPIV) measurements reveal the internal flow dynamics. Confocal imaging of fluorescently labelled PA elucidates the bacterial distribution within the deposits. FINDINGS The study finds that the evaporation rate is drastically impeded during drying at elevated solutal concentrations, particularly at high RH and low temperature conditions. MicroPIV shows reduced internal flow under high RH and low temperature (low evaporation rate) conditions. Evaporation rate influences crystal growth, with delayed efflorescence and extending crystallization times. PA forms denser peripheral arrangements under high evaporation rates and shows a fivefold increase in survivability under low evaporation rates. These findings highlight the critical impact of environmental conditions on pathogen persistence and disease spread from inanimate surfaces.
Collapse
Affiliation(s)
- Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India
| | - Siddhant Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India; School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551 India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India.
| |
Collapse
|
3
|
Kelly S, Genevskiy V, Björklund S, Gonzalez-Martinez JF, Poeschke L, Schröder M, Nilius G, Tatkov S, Kocherbitov V. Water Sorption and Structural Properties of Human Airway Mucus in Health and Muco-Obstructive Diseases. Biomacromolecules 2024; 25:1578-1591. [PMID: 38333985 PMCID: PMC10934264 DOI: 10.1021/acs.biomac.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.
Collapse
Affiliation(s)
- Susyn
J. Kelly
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
- Department
of Clinical Sciences, Ross University of
Veterinary Medicine, Basseterre KN-0101, Saint
Kitts and Nevis
| | - Vladislav Genevskiy
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | - Sebastian Björklund
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| | | | - Lara Poeschke
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Maik Schröder
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
| | - Georg Nilius
- Evang. Kliniken
Essen-Mitte GmbH, Essen DE-45136, Germany
- Universität
Witten/Herdecke, Witten DE-58455, Germany
| | - Stanislav Tatkov
- Fisher
& Paykel Healthcare Ltd., 15 Maurice Paykel Place, East Tamaki, Auckland NZ-2013, New Zealand
| | - Vitaly Kocherbitov
- Biomedical
Science, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, Malmö SE-20506, Sweden
| |
Collapse
|
4
|
Sakai K, Nishimoto S, Hirai Y, Arakawa K, Akamatsu M, Tanaka K, Suzuki T, Sakai H. Effects of Counterion on the Formation and Hydration Behavior of α-Form Hydrated Crystals (α-Gels). Gels 2023; 9:928. [PMID: 38131914 PMCID: PMC10742572 DOI: 10.3390/gels9120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
α-Form hydrated crystals form a lamellar gel in which the alkyl chains of the amphiphilic molecules are hexagonally arranged within bilayers below the gel-liquid crystal phase transition temperature. In practice, the lamellar gel network with excess water is called an "α-gel", particularly in the cosmetics industry. In this study, the hydration or water sorption of amphiphilic materials in water vapor was assessed using a humidity-controlled quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The amphiphilic materials used in this study were hexadecyl phosphate salts neutralized with L-arginine (C16P-Arg), CsOH (C16P-Cs), KOH (C16P-K), and NaOH (C16P-Na). Small- and wide-angle X-ray scattering measurements revealed that C16P-Arg and C16P-Cs yielded α-form hydrated crystals. Humidity-controlled QCM-D measurements demonstrated that C16P-Arg and C16P-Cs more readily underwent hydration or water sorption than C16P-K and C16P-Na. The key conclusion is that the significant hydration ability of C16P-Arg and C16P-Cs promotes the formation of the corresponding α-form hydrated crystals.
Collapse
Affiliation(s)
- Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan (K.A.); (H.S.)
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (M.A.); (T.S.)
| | - Shuri Nishimoto
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan (K.A.); (H.S.)
| | - Yuki Hirai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan (K.A.); (H.S.)
| | - Kyosuke Arakawa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan (K.A.); (H.S.)
| | - Masaaki Akamatsu
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (M.A.); (T.S.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Tottori, Japan
| | - Keisuke Tanaka
- R&D Center, Nikko Chemicals. Co., Ltd., NIKKOL GROUP, 3-24-3 Hasune, Itabashi 174-0046, Tokyo, Japan;
| | - Toshiyuki Suzuki
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (M.A.); (T.S.)
- R&D Center, Nikko Chemicals. Co., Ltd., NIKKOL GROUP, 3-24-3 Hasune, Itabashi 174-0046, Tokyo, Japan;
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan (K.A.); (H.S.)
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (M.A.); (T.S.)
| |
Collapse
|
5
|
Guo Y, An X, Qian X. Fast Response and Visual Transparency Switching Hydrochromic Film Based on the Rational Structure of Cellulose/Poloxamer Copolymers Design for Smart Window. Macromol Rapid Commun 2023; 44:e2200831. [PMID: 36583648 DOI: 10.1002/marc.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Indexed: 12/31/2022]
Abstract
The authors are motivated to develop a series of hydrochromic copolymers with fast response, reversibility, repeatability, and visual transparency transition. The hydrochromic block copolymers are based on the rational ratio of hydrophilic segments of poloxamer block and hydrophobic segments of ethyl cellulose according to the preparation method of polyurethane. By tuning the ratio of hydrophilic segments or adding hygroscopic salts, the hydrochromic polymer is endowed with the ability to visualize the transparency in response to the relative humidity. Especially, the response time of the polymer is extremely shortened, up to 1 s for the optimized sample. Within the moisture stimulation, the hygroscopic swelling increases the film thickness, leading to a reversible transparency switching from a highly transparent state (82%) to an opaque white state (20.5%).
Collapse
Affiliation(s)
- Yuqian Guo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xianhui An
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| |
Collapse
|
6
|
Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy. Antioxidants (Basel) 2022; 11:antiox11122471. [PMID: 36552679 PMCID: PMC9774145 DOI: 10.3390/antiox11122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution. The investigations revealed that, with the exception of the molecular masses, the compounds generated by the two synthetic procedures present similar properties, including good thermal stability, with a Tpeak of 456 °C, and the capacity for network formation. In addition, the investigation by dynamic light scattering techniques evidenced a mean diameter for PEBSA particles of around 596 nm and a zeta potential of -25 mV, which attests to their stability. The bio-based copolymacrolactone was used as a matrix for erythritol encapsulation. The new PEBSA-Eryt compound presented an increased sorption/desorption process, compared with the PEBSA matrix, and a crystalline morphology confirmed by X-ray diffraction analysis. The bioactive compound was also characterised in terms of its biocompatibility and antioxidant behaviour.
Collapse
|
7
|
Lema MA, Nava-Medina IB, Cerullo AR, Abdelaziz R, Jimenez SM, Geldner JB, Abdelhamid M, Kwan CS, Kharlamb L, Neary MC, Braunschweig AB. Scalable Preparation of Synthetic Mucins via Nucleophilic Ring-Opening Polymerization of Glycosylated N-Carboxyanhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. Lema
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, City College of New York, 160 Convent Ave, New York, New York 10031, United States
| | - Ilse B. Nava-Medina
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Antonio R. Cerullo
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Radwa Abdelaziz
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Stephanie M. Jimenez
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jacob B. Geldner
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Mohamed Abdelhamid
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chak-Shing Kwan
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Lily Kharlamb
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Michelle C. Neary
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| |
Collapse
|
8
|
Rasheed A, Sharma S, Kabi P, Saha A, Chaudhuri S, Basu S. Precipitation dynamics of surrogate respiratory sessile droplets leading to possible fomites. J Colloid Interface Sci 2021; 600:1-13. [PMID: 34022720 DOI: 10.1016/j.jcis.2021.04.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS The droplets ejected from an infected host during expiratory events can get deposited as fomites on everyday use surfaces. Recognizing that these fomites can be a secondary route for disease transmission, exploring the deposition pattern of such sessile respiratory droplets on daily-use substrates thus becomes crucial. EXPERIMENTS The used surrogate respiratory fluid is composed of a water-based salt-protein solution, and its precipitation dynamics is studied on four different substrates (glass, ceramic, steel, and PET). For tracking the final deposition of viruses in these droplets, 100 nm virus emulating particles (VEP) are used and their distribution in dried-out patterns is identified using fluorescence and SEM imaging techniques. FINDINGS The final precipitation pattern and VEP deposition strongly depend on the interfacial transport processes, edge evaporation, and crystallization dynamics. A constant contact radius mode of evaporation with a mixture of capillary and Marangoni flows results in spatio-temporally varying edge deposits. Dendritic and cruciform-shaped crystals are majorly seen in all substrates except on steel, where regular cubical crystals are formed. The VEP deposition is higher near the three-phase contact line and crystal surfaces. The results showed the role of interfacial processes in determining the initiation of fomite-type infection pathways in the context of COVID-19.
Collapse
Affiliation(s)
- Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, KA 560012, India
| | - Shubham Sharma
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, KA 560012, India
| | - Prasenjit Kabi
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, KA 560012, India
| | - Abhishek Saha
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Swetaprovo Chaudhuri
- Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6, Canada
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, KA 560012, India; Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, KA 560012, India.
| |
Collapse
|
9
|
|
10
|
Abstract
For the past few decades, researchers have been intrigued by glassy polymers, which have applications ranging from gas separations to corrosion protection to drug delivery systems. The techniques employed to examine the sorption and diffusion of small molecules in glassy polymers are the subject of this review. Diffusion models in glassy polymers are regulated by Fickian and non-Fickian diffusion, with non-Fickian diffusion being more prevalent. The characteristics of glassy polymers are determined by sorption isotherms, and different models have been proposed in the literature to explain sorption in glassy polymers over the last few years. This review also includes the applications of glassy polymers. Despite having many applications, current researchers still have difficulty in implementing coating challenges due to issues such as physical ageing, brittleness, etc., which are briefly discussed in the review.
Collapse
|
11
|
Li W, Wellio G, Lu T, Zou C, Li Y. Preparation and water sorption properties of novel SiO2-LiBr microcapsules for water-retaining pavement. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Eaton MD, Domene-López D, Wang Q, G. Montalbán M, Martin-Gullon I, Shull KR. Exploring the effect of humidity on thermoplastic starch films using the quartz crystal microbalance. Carbohydr Polym 2021; 261:117727. [DOI: 10.1016/j.carbpol.2021.117727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
|
13
|
Pan W, Huang X, Chen Q. Uniformization of Mass Sensitivity Distribution of Silver Electrode QCM. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1953-1956. [PMID: 32746208 DOI: 10.1109/tuffc.2020.3008790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quartz crystal microbalance (QCM) is a highly sensitive mass sensor and has been widely used in many fields. However, the nonuniform distribution of mass sensitivity will lead to poor reproducibility of QCM, which is not conducive to the application of QCM in some fields. Considering the effect of electrode shape, size, and material on mass sensitivity distribution, we found that for an AT-cut QCM with a fundamental frequency of 10 MHz, when the inner and outer diameters of silver ring electrode and the electrode loading factor are 2 and 5 mm and 0.0033, respectively, an approximately uniform mass sensitivity distribution can be obtained. The plating experiment in which rigid silver films were plated on the surface of electrode verified the uniformity. The uniform mass sensitivity distribution will make the application of QCM more convenient; the reproducibility can also be improved. This design of QCM will enrich QCM products and facilitate the application of QCM in various fields.
Collapse
|