1
|
Hastuti LP, Kusumaatmaja A, Darmawan A, Kartini I. Durable photocatalytic membrane of PAN/TiO 2/CNT for methylene blue removal through a cross-flow membrane reactor. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2145221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lathifah Puji Hastuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adi Darmawan
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang, Indonesia
| | - Indriana Kartini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Indonesia Natural Dye Institute (INDI), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Ma H, Wang X, Jin R, Tan T, Zhou X, Fang R, Shen Y, Dong F, Sun Y. Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel. J Colloid Interface Sci 2022; 630:704-713. [DOI: 10.1016/j.jcis.2022.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
3
|
Vatanpour V, Kose-Mutlu B, Mutlu-Salmanli O, Ilyasoglu G, Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Koyuncu I. Bi4O5I2 nanosheets as a novel nanofiller for fabrication of antifouling polyethersulfone nanocomposite membranes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Lofrano G, Ubaldi F, Albarano L, Carotenuto M, Vaiano V, Valeriani F, Libralato G, Gianfranceschi G, Fratoddi I, Meric S, Guida M, Romano Spica V. Antimicrobial Effectiveness of Innovative Photocatalysts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2831. [PMID: 36014697 PMCID: PMC9415964 DOI: 10.3390/nano12162831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Waterborne pathogens represent one of the most widespread environmental concerns. Conventional disinfection methods, including chlorination and UV, pose several operational and environmental problems; namely, formation of potentially hazardous disinfection by-products (DBPs) and high energy consumption. Therefore, there is high demand for effective, low-cost disinfection treatments. Among advanced oxidation processes, the photocatalytic process, a form of green technology, is becoming increasingly attractive. A systematic review was carried out on the synthesis, characterization, toxicity, and antimicrobial performance of innovative engineered photocatalysts. In recent decades, various engineered photocatalysts have been developed to overcome the limits of conventional photocatalysts using different synthesis methods, and these are discussed together with the main parameters influencing the process behaviors. The potential environmental risks of engineered photocatalysts are also addressed, considering the toxicity effects presented in the literature.
Collapse
Affiliation(s)
- Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Francesca Ubaldi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Maurizio Carotenuto
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Federica Valeriani
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Gianluca Gianfranceschi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sureyya Meric
- Department of Environmental Engineering, Tekirdag Namik Kemal University, Corlu 59860, Turkey;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| |
Collapse
|
5
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
7
|
Li S, Wu F, Zhang X, Han G, Si Y, Yu J, Ding B. Flexible Al 2O 3/ZrO 2 nanofibrous membranes for thermal insulation. CrystEngComm 2022. [DOI: 10.1039/d1ce01512e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flexible Al2O3/ZrO2 nanofibrous membranes of low density and high working temperature were fabricated by sol–gel electrospinning, and could be used for thermal-insulation applications.
Collapse
Affiliation(s)
- Shouzhen Li
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Xuan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Guangting Han
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| |
Collapse
|
8
|
Liang R, Yu R, Wang R, Zhou Z, Liu G. Engineering of a Commercial Polyamide Microfiltration Membrane via Robustly Immobilizing Gallic Acid-Modified Silver Nanoparticles for the Removal of Antibiotics and Antibiotic-Resistant Bacteria. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ruiquan Yu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Gongyan Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Yu R, Zhu R, Jiang J, Liang R, Liu X, Liu G. Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection. J Colloid Interface Sci 2021; 598:302-313. [PMID: 33901854 DOI: 10.1016/j.jcis.2021.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Mature microfiltration (MF) membrane is a low-cost, effective, and promising technology to provide affordable purified water for people living in developing countries. However, the lack of disinfection ability and inherent membrane fouling problems have seriously restricted the large-scale application of conventional MF treatment system in producing safe drinking water. In this work, zwitterionic silver nanoparticles (AgNPs) with surface modification of poly(carboxybetaine acrylate-co-dopamine methacryamide) (PCBDA) copolymers were robustly immobilized onto commercial polyamide MF membrane via mussel-inspired chemistry for water disinfection. The designed microfiltration membrane, named as PCBDA@AgNPs-MF, exhibited integrated properties of high and stable payload of AgNPs, broad-spectrum anti-adhesive and antimicrobial activities, and easy removal of inactivated microbial cells from membrane surface. Ascribing to the synergetic effect of anti-adhesive and antimicrobial features brought by zwitterionic PCBDA@AgNPs, the biofilms growth on polyamide membrane surface was significantly inhibited, which showed potential access to achieve long-term biofouling resistance and maintain water flux for conventional MF membrane. As water disinfection device, these attributes enabled PCBDA@AgNPs-MF to effectively disinfect the model and natural bacteria-contaminated water.
Collapse
Affiliation(s)
- Ruiquan Yu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruixin Zhu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Jiang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Gongyan Liu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Using Gd-Enhanced β-NaYF4:Yb,Er Fluorescent Nanorods Coupled to Reduced TiO2 for the NIR-Triggered Photocatalytic Inactivation of Escherichia coli. Catalysts 2021. [DOI: 10.3390/catal11020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
β-NaYF4:Yb,Er,Gd fluorescent nanorods were successfully coupled to a reduced TiO2 (UCNPs@R-TiO2) nanocomposite and applied to visible-light catalytic sterilization under 980 nm near-infrared (NIR) light illumination. The UCNPs (β-NaYF4:Yb,Er,Gd) absorb the NIR light and emit red and green light. The visible light can be absorbed by the R-TiO2 (Eg = 2.8 eV) for the photocatalytic reaction. About 98.1% of Escherichia coli were effectively killed upon 12 min of NIR light irradiation at a minimum inhibitory concentration (MIC) of 40 μg/mL UCNPs@R-TiO2 nanocomposite. The bactericidal properties were further evaluated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. We found that the high bactericidal activity was due to the synergistic effect between the UCNPs and R-TiO2. Moreover, the UCNPs show excellent upconversion luminance properties, and the introduction of visible-light-absorbed R-TiO2 nanoparticles (2.8 eV) was conducive to the efficient separation and utilization of photogenerated electron-hole pairs.
Collapse
|
11
|
Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA. Strategic Doping Approach of the Fe-BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS OMEGA 2021; 6:1575-1583. [PMID: 33490817 PMCID: PMC7818580 DOI: 10.1021/acsomega.0c05398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The present study describes the strategic doping of Fe metal ions into a BiOI microstructure using ex situ and in situ processes to synthesize a Fe-BiOI microstructure and their effect on photocatalytic degradation of tetracycline (TC). The data suggested that in situ Fe-BiOI (Fe-BiOI-In) has superior performance compared to ex situ Fe-BiOI (Fe-BiOI-Ex) due to the uniform dispersion of Fe within the Fe-BiOI material. Calculated bandgaps ∼1.8, ∼1.5, and 2.4 eV were observed for BiOI (without Fe), Fe-BiOI-In, and Fe-BiOI-Ex, respectively. Interestingly, Fe incorporation within BiOI might decrease the bandgap in Fe-BiOI-In due to the uniform distribution of metal ions, whereas increasing the bandgap in Fe-BiOI-Ex attributed to nonuniform distribution or agglomeration of metal ions. The uniform dispersion of Fe within Fe-BiOI modulates electronic properties as well as increases the exposure of Fe ions with TC, thereby higher degradation efficiency of TC. The in situ Fe-BiOI material shows 67 and 100% degradation of TC at 10 and 1 mg/L, respectively. The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar irradiation. The analysis was also performed over BiOI, which proves that Fe has a profound effect on TC degradation as Fe(II) tends to trigger oxidation-reduction by utilizing the chelate formation tendency of TC. Therefore, the prepared Fe-BiOI-In has the potential ability to degrade pharmaceutical compounds, especially, TC from wastewater.
Collapse
Affiliation(s)
- Neetu Talreja
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
| | - Mohammad Ashfaq
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
- School
of Life Science, BS AbdurRahaman Crescent
Institute of Science and Technology, Chennai 600048, India
| | - Divya Chauhan
- Department
of Chemical and Biomedical Engineering, University of South Florida, Tampa 33620, Florida, United States
| | - Adriana C. Mera
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
| | - C. A. Rodríguez
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Department
of Chemistry, Faculty of Sciences, University of La Serena, La Serena 1700000, Chile
| |
Collapse
|
12
|
Hu Y, Yang Y, Zhang J, Jin S, Zheng H. Efficient adsorption and full spectrum photocatalytic degradation of low concentration PPCPs promoted by graphene/TiO 2 nanowires hybrid structure in 3D hydrogel networks. RSC Adv 2020; 10:27050-27057. [PMID: 35685946 PMCID: PMC9122628 DOI: 10.1039/d0ra03449e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023] Open
Abstract
The removal of low concentration PPCPs from water is a challenging issue. A graphene hydrogel with 3D networks shows great potential for accelerating eddy diffusion of low concentration PPCPs. Herein, to further promote its molecular diffusion, a graphene/TiO2 nanowires (GNW) hybrid structure was implanted into graphene hydrogel. The as-prepared rGO/GNW hydrogel exhibited significantly enhanced adsorption–photocatalytic performance and excellent stability for low concentration ethenzamide, a typical pharmaceutical pollutant in water, under vacuum ultraviolet (VUV), ultraviolet (UV), visible and near-infrared light irradiation. When the initial ethenzamide concentration was 500 ppb and catalyst dosage was 10 mg/150 mL, ethenzamide was completely removed in 3 min and the corresponding photocatalytic apparent rate constant was 2.20 times that by GNW, 4.09 times that by rGO/P25 and 4.31 times that by rGO/NW under VUV irradiation, respectively, and its removal rate attained 99.0% in 120 min and the corresponding photocatalytic apparent rate constant was 2.06 times that by GNW, 3.34 times that by rGO/P25 and 17.42 times that by rGO/NW under UV irradiation, respectively. The GNW hybrid structure in the hydrogel played a vital role in overcoming the mass transfer resistance of low concentration PPCPs. The as-prepared rGO/GNW hydrogel exhibits significant potential for the removal of low concentration PPCPs from water. A 3D rGO/GNW hydrogel exhibits efficient adsorption, full spectrum photocatalytic performance and significant potential for low concentration PPCP removal from water.![]()
Collapse
Affiliation(s)
- Yajie Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing 100083 China
| | - Yanan Yang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing 100083 China
| | - Jiejing Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing 100083 China
| | - Shengnan Jin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing 100083 China
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences Beijing 100083 China
| |
Collapse
|
13
|
Kim T, Cho J, Lee J, Seo J, Lee C. Comment on "Visible-light-driven, hierarchically heterostructured, and flexible silver/bismuth oxyiodide/titania nanofibrous membranes for highly efficient water disinfection" by Song et al. J Colloid Interface Sci 2020; 566:513-514. [PMID: 31874713 DOI: 10.1016/j.jcis.2019.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Taewan Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junghun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiwon Seo
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Wu X, Song J, Ding B, Si Y. Response to comment on “Visible-light-driven, hierarchically heterostructured, and flexible silver/bismuth oxyiodide/titania nanofibrous membranes for highly efficient water disinfection” by Song et al. J Colloid Interface Sci 2020; 565:205-206. [DOI: 10.1016/j.jcis.2019.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
|
15
|
Zhang J, Hu Y, Zheng H, Zhang P. Hierarchical Z-scheme 1D/2D architecture with TiO 2 nanowires decorated by MnO 2 nanosheets for efficient adsorption and full spectrum photocatalytic degradation of organic pollutants. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00419g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hierarchical 1D/2D TiO2/MnO2 composite shows superior adsorption, full spectrum photocatalytic activity and excellent stability for organic pollutant removal.
Collapse
Affiliation(s)
- Jiejing Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Yajie Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
16
|
Qiao Y, Zhou X, Geng H, Sun L, Zhen D, Cai Q. β-NaYF 4:Yb,Er,Gd nanorods@1T/2H-MoS 2 for 980 nm NIR-triggered photocatalytic bactericidal properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00908c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fabrication of β-NaYF4:Yb,Er,Gd@1T/2H-MoS2 nanocomposites for NIR-driven photocatalytic sterilization of Escherichia coli.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Xionglin Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Deshuai Zhen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
17
|
Stabilizing CuPd bimetallic alloy nanoparticles deposited on holey carbon nitride for selective hydroxylation of benzene to phenol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|