1
|
Zhan J, Kong Y, Zhou X, Gong H, Chen Q, Zhang X, Zhang J, Wang Y, Huang W. 3D printing of wearable sensors with strong stretchability for myoelectric rehabilitation. Biomater Sci 2025; 13:1021-1032. [PMID: 39815832 DOI: 10.1039/d4bm01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF. Our proposed solution leverages polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as core materials, ingeniously incorporating wood pulp nano celluloses (CNF-P)-Na+ to enhance the structural integrity. Additionally, the inclusion of nano-silica particles further augments the sensor's capabilities, enabling the creation of a stress-sensitive mineral ionization hydrogel sensor. This innovative approach not only capitalizes on the superior rheological properties of the materials but also, through advanced 3D printing technology, facilitates the production of a micro-scale structural hydrogel sensor with unparalleled sensitivity, stability, and durability. The potential of this sensor in the realm of human motion detection is nothing short of extraordinary. This development can potentially improve the treatment landscape for EMG-BF offering patients more convenient and efficient therapeutic options.
Collapse
Affiliation(s)
- Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| |
Collapse
|
2
|
Wang R, Liu C, Li Z, Li Y, Yu X. Ultra-Stretchable, Adhesive, Conductive, and Antifreezing Multinetwork Borate Ester-Based Hydrogel for Wearable Strain Sensor and VOC Absorption. ACS Sens 2024; 9:5322-5332. [PMID: 39404651 DOI: 10.1021/acssensors.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hydrogels based on borate ester bonds exhibit remarkable tensile strength and self-healing ability, which make them a promising material for various biological research and strain sensor applications. However, in order to meet the practical application of hydrogel strain sensors, they must also show high conductivity, frost resistance, and proper adhesion, which is still a continuous challenge. Herein, a triple network hydrogel was prepared using poly(vinyl alcohol) (PVA) as the first network, ethylene imine polymer (PEI) as the second network, and poly(acrylamide-co-acrylic acid) copolymer (denoted as P(AM-Co-AA)) as the third network. 3-Carboxy-4-fluorophenylboronic acid (CFBS) was used as the cross-linking agent, glycerol (GL) was added to improve low-temperature resistance, and sodium chloride (NaCl) was incorporated to enhance electrical conductivity. The resulting PVA-CFBS@PEI@P(AM-Co-AA) triple network hydrogel exhibited impressive mechanical properties, including ultra tensile strength (4100%, 266.8 kPa), high toughness (6.5 MJ/m3), and low-temperature resistance (-60 °C). Additionally, it demonstrated high conductivity (σ = 1.83 mS/cm). The incorporation of CFBS endowed the hydrogel with excellent self-healing ability, while GL improved low-temperature resistance and strain sensing sensitivity (gauge factor (GF) = 2.8 (0-300%), GF = 5.6 (300-600%), GF = 8.7 (600-1000%)). The prepared hydrogel sensor can repetitively detect and differentiate between a wide range of human activities such as joint movements, frowning, and smiling. Additionally, the hydrogel demonstrated favorable mechanical properties at -20 °C (good adhesion, tensile strength: 1169.8%, 1.2 MPa; conductivity: 0.71 mS/cm, and strain sensing coefficient: GF = 1.3), making it suitable for applications in low-temperature environments. Furthermore, it also functions as an exceptional adsorbent, capable of selectively absorbing volatile organic compounds at high capacity (e.g., methanol: 1.80 g/g; acetone: 1.50 g/g).
Collapse
Affiliation(s)
- Ruixue Wang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, PR China
| | - Chunjiao Liu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, PR China
| | - Zhongwan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, PR China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, PR China
| |
Collapse
|
3
|
Ren H, Guo A, Luo C. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 2024; 328:121738. [PMID: 38220330 DOI: 10.1016/j.carbpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.
Collapse
Affiliation(s)
- Hanyu Ren
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Andi Guo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Zhang S, Guo F, Li M, Yang M, Zhang D, Han L, Li X, Zhang Y, Cao A, Shang Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J Colloid Interface Sci 2024; 658:137-147. [PMID: 38100970 DOI: 10.1016/j.jcis.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengdan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Yang Y, Zhu Y, Yang A, Liu T, Fang Y, Wang W, Song Y, Li Y. Rapid fabricated in-situ polymerized lignin hydrogel sensor with highly adjustable mechanical properties. Int J Biol Macromol 2024; 260:129378. [PMID: 38218262 DOI: 10.1016/j.ijbiomac.2024.129378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Conductive hydrogels have been widely used as sensors owing to their tissue-like properties. However, the synthesis of conductive hydrogels with highly adjustable mechanical properties and multiple functions remains difficult to achieve yet highly needed. In this study, lignin hydrogel characterized by frost resistance, UV resistance, high conductivity, and highly adjustable mechanical properties without forming by-products was prepared through a rapid in-situ polymerization of acrylic acid/zinc chloride (AA/ZnCl2) aqueous solution containing lignin extract induced by the reversible quinone-catechol redox of the ZnCl2-lignin system at room temperature. Results revealed that the PAA/ZnCl2/lignin hydrogel exhibited mechanical properties with tensile stress (ranging from 0.08 to 3.28 MPa), adhesion to multiple surfaces (up to 62.05 J m-2), excellent frost resistance (-70-20 °C), UV resistance, and conductivity (0.967 S m-1), which further endow the hydrogel as potential strain and temperature sensor with wide monitor range (0-300 %), fatigue resistance, and quick response (70 ms for 150 % strain). This study proposed and developed a green, simple, economical, and efficient processing method for a hydrogel sensor in flexible wearable devices and man-machine interaction fields.
Collapse
Affiliation(s)
- Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Tian Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yiqun Fang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Weihong Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China; College of home and art design, Northeast Forestry University, Harbin 150040, PR China.
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150006, PR China.
| |
Collapse
|
6
|
Zhang J, Guan Y, Zhang Q, Wang T, Wang M, Zhang Z, Gao Y, Gao G. Durable hydrogel-based lubricated composite coating with remarkable underwater performances. J Colloid Interface Sci 2024; 654:568-580. [PMID: 37862806 DOI: 10.1016/j.jcis.2023.09.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
HYPOTHESIS Hydrogel coatings have received great attention in the field of such as medical devices, water treatment membranes, flexible electronics, and marine antifouling. However, when it comes to lubrication of hydrogel materials, though it has great potential applications in the field of industrial and medical drag reduction, some restrained properties are urgently needed to overcome for releasing the practical potential. EXPERIMENTS Durability of high lubrication was revealed from the sliding test during the long-term storage, as well as the long-distance sliding. Some variables which possibly affect the lubrication performance were examined to demonstrate that excellent lubricity of the coating would not be easily influenced by load, frequency, friction pair and temperature. The microstructure and mechanical characterization of the lubricative coating indicate that the resistance to harsh running conditions is premised on enough hydration extent and robustness. The formulae of Possion ratio and ball-on-disk contact stress which apply to soft matter were used for calculating contact stress values in tribology tests. Anti-swelling and bio-compatibility are also verified. FINDINGS This work found a route of achieving superior lubrication and coexisting with stability in lubrication, which can be used for drag reduction in medical devices and shipbuilding industry.
Collapse
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yingxin Guan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Tianyu Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ming Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
7
|
Tian R, Jia X, Bai Y, Yang J, Song H. Fluorinated Graphene Thermally Conductive Hydrogel with a Solid-Liquid Interpenetrating Heat Conduction Network. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1451-1460. [PMID: 38112199 DOI: 10.1021/acsami.3c14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hydrogels with excellent mechanical flexibility are widely used in flexible electronic devices. However, it is difficult to meet further applications of high-power integrated flexible electronics as a result of their low thermal conductivity. Herein, highly thermally conductive composite hydrogels with a solid-liquid interpenetrating thermal conductivity network are constructed by aromatic polyamide nanofibers (ANF) and fluorinated graphene (FG) reinforced poly(vinyl alcohol) (PVA) and cross-linked by tannic acid (TA) solution immersion to obtain a hydrogel with a double cross-linked network. The PVA-ANF-FG3T-11.1% composite hydrogel exhibits good mechanical properties compared to PVA-ANFT, with a tensile modulus of up to 0.89 MPa, a tensile strength of up to 1.23 MPa, and an energy of rupture of up to 3.45 MJ cm-3, which is mainly attributed to the multihydrogen bonding interactions in the composite hydrogel. In addition, the friction coefficient of the PVA-ANF-FG3T-11.1% composite hydrogel is 0.178, making it suitable for use in high-friction coefficient applications. The thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel is 1.42 W m-1 K-1, which is attributed to the synergistic effect of the solid thermal conductivity network and the liquid convection network, resulting in a high thermal conductivity of the composite hydrogel. The high thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel shows great potential for flexible wearable electronics and cooling paste applications.
Collapse
Affiliation(s)
- Rui Tian
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Xiaohua Jia
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yunfei Bai
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Jin Yang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Haojie Song
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
8
|
Wang B, Li Z, Li S, Xv Q, You D, Tu X, Li W, Wang X. Cartilage-inspired terpolymer hydrogel with excellent mechanical properties and superior lubricating ability. SOFT MATTER 2023; 19:6341-6354. [PMID: 37575029 DOI: 10.1039/d3sm00841j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Osteoarthritis (OA), the most common degenerative joint disorder, seriously affects patients' daily activities. Recently, hydrogels, due to their similar structure to articular cartilage, have shown great potential as cartilage-repairing materials. In the present work, we developed a simple process for fabricating terpolymer [P(acrylamide-co-acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid)/Fe3+] hydrogel [P(AAm-co-AAc-co-AMPS)/Fe3+]. The content of AMPS was found to show a crucial effect on the mechanical and tribological performance of the terpolymer hydrogel. When the content of AMPS was 0.45 mol L-1, the compressive strength, modulus, and friction coefficient of the terpolymer hydrogel were 66.60 ± 1.79 MPa, 2.10 ± 0.16 MPa, and 0.032, respectively. In addition, the hydrogel showed high wear durability and the friction coefficient was as low as 0.038 after 3.6 × 105 sliding cycles.
Collapse
Affiliation(s)
- Binbin Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Ziheng Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Shuangjian Li
- Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou, 510651, China
- Shaoguan Research Institute of Jinan University, 168 Muxi Avenue, Shaoguan 512029, China
| | - Qihang Xv
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Deqiang You
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Xiaohui Tu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Xiaojian Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
- Shaoguan Research Institute of Jinan University, 168 Muxi Avenue, Shaoguan 512029, China
- Guangdong Provincial Engineering & Technology Research Center for 3D Printing and Additive Manufacturing, Guangzhou 510632, China
| |
Collapse
|
9
|
Liu D, Cao Y, Jiang P, Wang Y, Lu Y, Ji Z, Wang X, Liu W. Tough, Transparent, and Slippery PVA Hydrogel Led by Syneresis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206819. [PMID: 36592418 DOI: 10.1002/smll.202206819] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Slippery and transparent polyvinyl alcohol (PVA) hydrogels with mechanical robustness exhibit broad applications in artificial biological soft tissues, flexible wearable electronics, and implantable biomedical devices. Most of the current PVA hydrogels, however, are unable to integrate these features, which compromises its performance in biological and engineering applications. To achieve such purpose, herein, a novel tactic is proposed, salting-out-after-syneresis of PVA, to realize a mechanically robust and highly transparent slippery PVA hydrogel. The syneresis of PVA sol is first conducted to form highly dense and transparent PVA polymer networks, then the salting-out effect tunes the aggregation of the polymer chains to rapidly induce the phase separation and crystallization. The resultant hydrogels show the transparency up to 98% in the visible region, the tribological coefficient down to 0.0081, and the excellent mechanical properties with strength, modulus, and toughness of 26.72 ± 1.05, 6.66 ± 0.29 MPa, and 55.21 ± 1.62 MJ m-3 , respectively. To reveal the potentials, PVA contact lens that combine remarkable lubrication, anti-protein adhesion, biocompatibility, and drug-loading functions are demonstrated. This strategy provides a simple and new avenue for developing the mechanically robust, transparent, and hydrated hydrogels, showing the potential in biomedicine and wearable devices.
Collapse
Affiliation(s)
- Desheng Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Cao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yixian Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Yaozhong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Low coefficient of friction hydrogels with fast self-healing properties inspired by articular cartilage. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chen Y, Song J, Wang S, Liu W. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications. Macromol Biosci 2023; 23:e2200275. [PMID: 36254859 DOI: 10.1002/mabi.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Indexed: 01/19/2023]
Abstract
Poly(vinyl alcohol) (PVA) hydrogel is a promising candidate for articular cartilage repair yet restrained by its mechanical strength and tribological property. Current work reports a newly designed PVA-based hydrogel modified by glycerol (g), bacterial cellulose (BC), and a cationic polymer poly (diallyl dimethylammonium chloride) (PDMDAAC), which is a novel cationic strengthening choice. The resultant PVA-g-BC-PDMDAAC hydrogel proves the effectiveness of this modification scheme, with a confined compressive modulus of 19.56 MPa and a friction coefficient of 0.057 at a joint-equivalent load and low sliding speed. The water content, swelling property, and creep behavior of this hydrogel are also within a cartilage-mimetic range. The properties of PVA-based hydrogels before PDMDAAC addition are likewise studied as a cross-reference. Besides, PDMDAAC-modified PVA hydrogel realizes ideal mechanical and lubrication properties with a relatively low PVA concentration (10 wt.%) and facile fabrication process, which lays a foundation for mass production and marketization in the future.
Collapse
Affiliation(s)
- Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.,Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, 518057, Shenzhen, China
| |
Collapse
|
12
|
La Manna S, Florio D, Di Natale C, Marasco D. Modulation of hydrogel networks by metal ions. J Pept Sci 2022:e3474. [PMID: 36579727 DOI: 10.1002/psc.3474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
Molecular insights on the mechanical properties of double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing: A mini review. Chem Asian J 2022; 17:e202200595. [PMID: 36066570 DOI: 10.1002/asia.202200595] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.
Collapse
Affiliation(s)
- Sung Giu Jin
- Dankook University - Cheonan Campus, Department of Pharmaceutical Engineering, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan, KOREA, REPUBLIC OF
| |
Collapse
|
15
|
Guo C, Cao Z, Peng Y, Wu R, Xu H, Yuan Z, Xiong H, Wang Y, Wu Y, Li W, Kong Q, Wang Y, Wu J. Subchondral bone-inspired hydrogel scaffold for cartilage regeneration. Colloids Surf B Biointerfaces 2022; 218:112721. [PMID: 35905590 DOI: 10.1016/j.colsurfb.2022.112721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Promoting the in situ regeneration of cartilage without additional cells or cytokines remains challenging. Here, inspired by the unique microstructures of subchondral bone, a cell and cytokine free hydrogel scaffold for cartilage regeneration was developed via a strategy of directional lyophilization and postcrosslinking. This strategy achieved intersecting microchannels in an orderly arrangement and an aligned ladder-like texture in a semi-interpenetrating hydrogel network. The resulting hydrogel had similar mechanical properties to the native cartilage extracellular matrix. Incorporating chitosan into the rigid network also endowed the hydrogel with excellent hemostatic properties. By delicately tuning the components and postcrosslinking conditions, the hydrogel was further endowed with suitable swelling and degradation properties for cartilage regeneration. In vitro tests showed that the highly biocompatible hydrogel scaffold could facilitate the migration and chondrogenic differentiation of bone marrow mesenchymal stem cells. In vivo results further verified that the hydrogel could promote the in situ regeneration of cartilage in a rat model of osteochondral defects. In summary, the subchondral bone-like hydrogel revealed promising prospects in cartilage regeneration and a variety of bioremediation applications.
Collapse
Affiliation(s)
- Chuan Guo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenxing Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hu Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilong Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Dynamic and structural studies on synergetic energy dissipation mechanisms of single-, double-, and triple-network hydrogels sequentially crosslinked by multiple non-covalent interactions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Zhang Z, Ye Z, Hu F, Wang W, Zhang S, Gao L, Lu H. Double‐network polyvinyl alcohol composite hydrogel with self‐healing and low friction. J Appl Polym Sci 2022. [DOI: 10.1002/app.51563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhouqiang Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Zishuo Ye
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot China
| | - Shoujing Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
| | - Li Gao
- Department of Gynaecology and Obstetrics The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an Shaanxi China
- Department of Gynaecology and Obstetrics The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
18
|
Wanasinghe SV, De Alwis Watuthanthrige N, Konkolewicz D. Interpenetrated triple network polymers: synergies of three different dynamic bonds. Polym Chem 2022. [DOI: 10.1039/d2py00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triply interpenetrated networks were made with a unique dynamic linker in each network. The linkers were hydrogen bonds, boronic esters and Diels–Alder adducts. Triply dynamic materials had superior properties compared to doubly dynamic analogues.
Collapse
Affiliation(s)
| | | | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
19
|
Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Prasad NK, Shome R, Biswas G, Ghosh SS, Dalal A. Discerning the self-healing, shear-thinning characteristics and therapeutic efficacy of hydrogel drug carriers migrating through constricted microchannel resembling blood microcapillary. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhang K, Wang Z, Zhang J, Liu Y, Yan C, Hu T, Gao C, Wu Y. A highly stretchable and room temperature autonomous self-healing supramolecular organosilicon elastomer with hyperbranched structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Tsai TY, Shen KH, Chang CW, Jovanska L, Wang R, Yeh YC. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater Sci 2021; 9:985-999. [PMID: 33300914 DOI: 10.1039/d0bm01528h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) are recently introduced to address the limitations of traditional DN hydrogels, such as the lack of diversity in the network structure and the restricted functionalities. However, two challenges remain, including the time-consuming preparation and the lack of shear-thinning and self-healing properties. Here, our approach to developing versatile ncDN hydrogels is through the use of multiple interfacial crosslinking chemistries (i.e., noncovalent interactions of electrostatic interaction and hydrogen bonds as well as dynamic covalent interactions of imine bonds and boronate ester bonds) and surface functionalized nanomaterials (i.e. phenylboronic acid modified reduced graphene oxide (PBA-rGO)). PBA-rGO was used as a multivalent gelator to further crosslink the two polymer chains (i.e. triethylene glycol-grafted chitosan (TEG-CS) and polydextran aldehyde (PDA)) in DN hydrogels, forming the TEG-CS/PDA/PBA-rGO ncDN hydrogels in seconds. The microstructures (i.e. pore size) and properties (i.e. rheological, mechanical, and swelling properties) of the ncDN hydrogels can be simply modulated by changing the amount of PBA-rGO. The dynamic bonds in the polymeric network provided the shear-thinning and self-healing properties to the ncDN hydrogels, allowing the hydrogels to be injected and molded into varied shapes as well as self-repair the damaged structure. Besides, the designed TEG-CS/PDA/PBA-rGO ncDN hydrogels were cytocompatible and also exhibited antibacterial activity. Taken together, we hereby provide a nanomaterial approach to fabricate a new class of ncDN hydrogels with tailorable networks and favorite properties for specific applications.
Collapse
Affiliation(s)
- Tsan-Yu Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lavernchy Jovanska
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 2021; 600:120478. [PMID: 33722756 DOI: 10.1016/j.ijpharm.2021.120478] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Polyvinyl alcohol (PVA) is a biodegradable semicrystalline synthetic polymer that has been used for biomedical applications for several years. In the pharmaceutical area, PVA has been widely used to prepare solid dispersions to improve the solubility of drugs. Furthermore, it has been demonstrated that PVA is highly biocompatible and non-toxic in in-vitro and in-vivo studies. Several reports provided in this review suggest a promising strategy for cancer treatment. Thus far, the current therapy includes a combination of surgery, chemotherapy, and radiotherapy, the effectivity can be limited due to the heterogeneous manifestations of the disease, dose-related toxicity, and side effects. A promising strategy is the implementation of a targeted therapy using hydrogels, microparticles, or nanoparticles (NPs), capable of encapsulating, protecting, transporting, and targeted administration of a therapeutic agent. Considering the relevance of the PVA in conjunction with their copolymers, it has become a promising biodegradable material to build novel functional composites used in the fabrication of hydrogels, microparticles, nanoparticles, and nanocomposites for drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico
| | - Patricia Martínez-Morales
- CONACYT- Centro de Investigación Biomédica de Oriente-IMSS, Km 4.5 Carretera Federal Atlixco-Metepec, 74360 Metepec, Puebla, Mexico
| | - Mirna L Sánchez
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, IMBICE-CONICET, Bernal, Argentina.
| |
Collapse
|
24
|
Zhang X, Chen J, He J, Bai Y, Zeng H. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J Colloid Interface Sci 2021; 585:420-432. [DOI: 10.1016/j.jcis.2020.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
25
|
Sanaei Moghaddam Sabzevar Z, Mehrshad M, Naimipour M. A biological magnetic nano-hydrogel based on basil seed mucilage: study of swelling ratio and drug delivery. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00905-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Stiffened and toughened polyacrylamide/polyanionic cellulose physical hydrogels mediated by ferric ions. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Wang JH, Xue YN, Wang YQ, An MW, Qin YX, Chen WY. High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Yi J, Nguyen KCT, Wang W, Yang W, Pan M, Lou E, Major PW, Le LH, Zeng H. Polyacrylamide/Alginate double-network tough hydrogels for intraoral ultrasound imaging. J Colloid Interface Sci 2020; 578:598-607. [DOI: 10.1016/j.jcis.2020.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
|
29
|
Drozdov AD, Christiansen JD. Tension-compression asymmetry in the mechanical response of hydrogels. J Mech Behav Biomed Mater 2020; 110:103851. [PMID: 32957177 DOI: 10.1016/j.jmbbm.2020.103851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Two factors play the key role in application of hydrogels as biomedical implants (for example, for replacement of damaged intervertebral discs and repair of spinal cord injuries): their stiffness and strength (measured in tensile tests) and mechanical integrity (estimated under uniaxial compression). Observations show a pronounced difference between the responses of hydrogels under tension and compression (the Young's moduli can differ by two orders of magnitude), which is conventionally referred to as the tension-compression asymmetry (TCA). A constitutive model is developed for the mechanical behavior of hydrogels, where TCA is described within the viscoplasticity theory (plastic flow is treated as sliding of junctions between chains with respect to their reference positions). The governing equations involve five material constants with transparent physical meaning. These quantities are found by fitting stress-strain diagrams under tension and compression on a number of pristine and nanocomposite hydrogels with various kinds of chemical and physical bonds between chains. Good agreement is demonstrated between the experimental data and results of simulation. The influence of volume fraction of nanoparticles, concentration of cross-links, and topology of a polymer network on material parameters is analyzed numerically.
Collapse
Affiliation(s)
- A D Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark.
| | - J deC Christiansen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| |
Collapse
|
30
|
Gao D, Wei X, Zhang Y, Ma Y, Wang G, Zhao X, Liu K, Huo Y, Wang H, Wang B. Preparation of TiO2-P(AM-AA) organic-inorganic composite water-retaining agent based on photocatalytic surface-initiated polymerization. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1702555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Dekuan Gao
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Xinfang Wei
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
- School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, P. R. China
| | - Yukai Zhang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Yuan Ma
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Guanqi Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Xin Zhao
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Kefan Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Yuanfei Huo
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Haiwang Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
- School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, P. R. China
| | - Bingzhu Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| |
Collapse
|