1
|
Wang Z, Meng S, Li J, Guo D, Fu S, Zhang D, Yang X, Sui G. Oxygen Vacancy Engineering and Constructing Built-In Electric Field in Fe-g-C 3N 4/Bi 2MoO 6 Z-Scheme Heterojunction for Boosting Photo-Fenton Catalytic Degradation Performance of Tetracycline. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406125. [PMID: 39246214 DOI: 10.1002/smll.202406125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A novel Fe-g-C3N4/Bi2MoO6 (FCNB) Z-scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo-Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density-functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe-N4 sites induces spin-polarization in the material, and the difference in Fermi energy levels results in the formation of built-in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into "non-toxic" compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.
Collapse
Affiliation(s)
- Zhanshou Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Dantong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| |
Collapse
|
2
|
Afzal S, Rehman AU, Najam T, Hossain I, Abdelmotaleb MAI, Riaz S, Karim MR, Shah SSA, Nazir MA. Recent advances of MXene@MOF composites for catalytic water splitting and wastewater treatment approaches. CHEMOSPHERE 2024; 364:143194. [PMID: 39209044 DOI: 10.1016/j.chemosphere.2024.143194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
MXenes are a group of 2D material which have been derived from the layered transition metal nitrides and carbides and have the characteristics like electrical conductivity, high surface area and variable surface chemical composition. Self-assembly of clusters/metal ions and organic linkers forms metal organic framework (MOF). Their advantages of ultrahigh porosity, highly exposed active sites and many pore architectures have garnered them a lot of attention. But poor conductivity and instability plague several conventional MOF. To address the issue, MOF can be linked with MXenes that have rich surface functional groups and excellent electrical conductivity. In this review, different etching methods for exfoliation of MXene along with the synthesis methods of MXene/MOF composites are reviewed, including hydrothermal method, solvothermal method, in-situ growth method, and self-assembly method. Moreover, application of these MXene/MOF composites for catalytic water splitting and wastewater treatment were also discussed in details. In addition to increasing a single MOF conductivity and stability, MXenes can add a variety of new features, such the template effect. Due to these benefits, MXene/MOF composites can be effectively used in several applications, including photocatalytic/electrocatalytic water splitting, adsorption and degradation of pollutants from wastewater. Finally, the authors explored the current challenges and the future opportunities to improve the efficiency of MXene/MOF composites.
Collapse
Affiliation(s)
- Samreen Afzal
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- Research and Development Division, SciTech International Pvt Ltd, G-10/1 Islamabad, Pakistan
| | - Ismail Hossain
- Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Mostafa A I Abdelmotaleb
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Sundas Riaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Rezaul Karim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
3
|
Hosseini MS, Abbasi A, Masteri-Farahani M. Photo-Fenton degradation of tetracycline antibiotic over MIL-101(Cr)/FeOOH nanocomposite as stable and efficient visible light responsive photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111582-111595. [PMID: 37816965 DOI: 10.1007/s11356-023-29812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Designing an inexpensive, easily synthesized, stable and efficient photocatalyst is a major challenge in photocatalysis area, especially when photo-reaction is performed in aquatic medium to degrade organic pollutants. To this aim, nano-sized MIL-101(Cr) (MIL = Materials Institute Lavoisier), as chemically tolerant metal-organic framework (MOF), was simply prepared via HF-free hydrothermal synthesis procedure. In order to decorate amorphous FeOOH quantum dots (QDs) on the surface of this MOF, various amounts of FeOOH QDs (i.e., 5, 10, 15 and 20 wt%) were synthesized in the presence of MIL-101(Cr) to prepare MIL-101(Cr)/FeOOH(x%) nanocomposites. Decoration of such iron oxide quantum dots on the surface of MIL-101(Cr) and investigation of its activity in photo-Fenton degradation of tetracycline (TC) antibiotic is reported here for the first time. Among the synthesized nanocomposites, MIL-101(Cr)/FeOOH(15%) demonstrated superior photo-Fenton activity in degradation of TC (80%) at short reaction time under optimum reaction condition using the energy-efficient white LED lamps as visible light source. It was observed that the synergy between any component of this photo-Fenton system such as nanocomposite, hydrogen peroxide and visible light is the main reason for enhancement of TC removal over time. Also, neither MIL-101(Cr) nor FeOOH QDs exhibited poor degradation efficiency, which implies the positive role of the coupling of these materials. Furthermore, the stability and recoverability of MIL-101(Cr)/FeOOH(15%) nanocomposite was investigated in four photo-Fenton cycles, which no significant decrease in TC degradation performance was observed.
Collapse
Affiliation(s)
- Mahdiyeh -Sadat Hosseini
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran.
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
4
|
Cheng Z, Xu Y, Fei B. Noble metal-free ternary cobalt-nickel phosphides for enhanced photocatalytic dye-sensitized hydrogen evolution and catalytic mechanism investigation. RSC Adv 2023; 13:23638-23647. [PMID: 37555084 PMCID: PMC10405047 DOI: 10.1039/d3ra04235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Transition metal phosphides have emerged as compelling alternatives to noble metal catalysts for photocatalytic hydrogen evolution, owing to their high efficiency, stability, ease of preparation, and low-cost-effectiveness. This study investigates a series of binary and ternary phosphides predominantly composed of cobalt and nickel employed for photocatalytic dye-sensitized hydrogen evolution. Under the optimal dye-to-catalyst mass ratio, CoNiP exhibited the highest hydrogen evolution activity (12.96 mmol g-1 h-1), demonstrating more significant and satisfactory performance than a variety of other reported materials. This can be attributed to the high conductivity and low hydrogen evolution overpotential of phosphides, which result from their metallic characteristics and the presence of free electrons, which promote efficient electron transfer between the catalyst and sensitizer. Density functional theory calculations revealed that the cobalt incorporation into the binary phosphides causes a negative shift in the average d-band center for CoNiP, weakening the adsorption affinity of the catalyst towards H2 molecules, thus effectively improving the hydrogen evolution rate compared to the pure binary phosphides. This work provides valuable insights for the development of low-cost and high-performance ternary phosphide photocatalysts.
Collapse
Affiliation(s)
- Zhixing Cheng
- Institute of Semiconductors, Guangdong Academy of Sciences Guangzhou 510070 P. R. China
- School of Fashion & Textiles, The Hong Kong Polytechnic University Hong Kong 100872 P. R. China
| | - Yiqin Xu
- Institute of Semiconductors, Guangdong Academy of Sciences Guangzhou 510070 P. R. China
| | - Bin Fei
- School of Fashion & Textiles, The Hong Kong Polytechnic University Hong Kong 100872 P. R. China
| |
Collapse
|
5
|
Chatterjee A, Wang L, Van Der Voort P. Metal-organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chem Commun (Camb) 2023; 59:3627-3654. [PMID: 36861263 DOI: 10.1039/d2cc05819g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There is an urgent need for cleaner production processes for chemicals. An efficient and promising alternative for such reactions is heterogeneous photocatalysis, which works on the principle of converting (visible) light, including solar energy, into chemical energy. To that end, properly designed semiconductor based photocatalysts are necessary to trigger the photocatalytic reactions. Many commonly used photocatalysts have too large bandgaps (3-3.4 eV) to use visible light and a too low surface area for efficient production. Metal-organic frameworks (MOFs) have emerged as an encouraging class of materials for photocatalytic applications due to their (i) large surface area and porosity that facilitate adsorption towards chemicals, (ii) tunable crystallinity and optical and electronic properties for efficient light absorption in the visible region, (iii) tunable composition and functionality that make them versatile photocatalysts for a wide range of reactions, and (iv) facile development of composites with other semiconductors to produce Z-scheme heterojunctions that can effectively suppress the recombination of photogenerated charges. Ongoing research has started focusing on the judicious construction of Z-scheme heterojunctions in MOFs, to mimic natural photosynthesis, such that the MOF photocatalysts have higher light harvesting capacity, spatially separated reductive and oxidative active sites, and well-preserved redox ability. This review provides a concise compilation of the recent progress in the development and applications of MOF-based Z-scheme photocatalysts, their advanced characterization, and future perspectives for further advancements.
Collapse
Affiliation(s)
- Amrita Chatterjee
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| | - Linyang Wang
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| | - Pascal Van Der Voort
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan281-S3, 9000Ghent, Belgium.
| |
Collapse
|
6
|
Zhu KA, Chen XJ, Yuan CW, Bai CW, Sun YJ, Zhang BB, Chen F. Orientated construction of visible-light-assisted peroxymonosulfate activation system for antibiotic removal: Significant enhancing effect of Cl . JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130476. [PMID: 36455327 DOI: 10.1016/j.jhazmat.2022.130476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic contaminants can migrate over long distances in the water, thus possibly causing severe detriment to the environment and even potential harm to human health. Heterogeneous activation of peroxymonosulfate (PMS) assisted by visible light is an emerging and promising technology for the purification of such wastewater. This study designed an ultra-efficient and stable PMS activator (FeCN) to restore the typical antibiotic-polluted water under harsh conditions. About 90.94% of sulfamethoxazole (SMX) was degraded in 35 min in the constructed FeCN+PMS/vis system, and the reaction rate constant was nearly 50-fold higher than direct photocatalysis. Electron spin resonance, quenching experiments, LC/MS technique, eco-toxicity assessment, and density functional theory validated that the SMX removal was dominated by the attack of h+, •O2- and 1O2 on the active atoms of SMX molecules with high Fukui index, presenting as a simultaneous degradation and detoxification process. Such a visible-light-assisted PMS activation system also had good resistance to the environmental water bodies and a broad spectrum in the degradation of various pollutants. In particular, Cl- (50 mM) could significantly accelerate the removal of SMX with a 32.6-fold increase in catalytic activity, and the mineralization efficiency could reach 56.6% under identical conditions. Moreover, this Cl- containing system excluded the degradation products of disinfection by-products, and such a system was also versatile for different contaminants. This work demonstrates the feasibility of the FeCN+PMS/vis system for the remediation of antibiotic-contaminated wastewater in the presence and absence of Cl-, and also highlights their great potential in WWTPs.
Collapse
Affiliation(s)
- Ke-An Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chao-Wei Yuan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Pazhand H, Sabbagh Alvani AA, Sameie H, Salimi R, Poelman D. The Exact Morphology of Metal Organic Framework MIL‐53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hooman Pazhand
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
- Standard Research Institute Alborz 3174734563 Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Reza Salimi
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Dirk Poelman
- Department of Solid State Sciences Lumilab Ghent University Krijgslaan 281-S1 9000 Ghent Belgium
| |
Collapse
|
8
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ahmed MA, Mohamed AA. Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges. RSC Adv 2022; 13:421-439. [PMID: 36605650 PMCID: PMC9769099 DOI: 10.1039/d2ra07225d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The presence of an increasing number of organic pollutants in water now poses serious risks to both human health and ecological systems. Many of these pollutants are persistent and non-biodegradable. The contamination of fresh water by harmful substances has compelled researchers to develop innovative, efficient, and cost-effective water remediation techniques and materials. Thus, photocatalysis has long been recognized as a promising approach to tackle both environmental remediation and the energy crisis. However, semiconductor photocatalysts frequently suffer from defects such as photo-generated charge carrier recombination, poor visible light response, and slow surface reaction kinetics, which can be remedied by modifications with appropriate co-catalysts. Therefore, graphene and its derivatives have widely been used as supports for semiconductors and photocatalysts due to their distinctive optical, physicochemical, and electrical features. This critical review addresses the current progress in the design and synthesis of graphene/semiconductor photocatalysts, as well as their use in photocatalytic degradation of organic pollutants and hydrogen production. Several influencing parameters are addressed, including pH, photocatalyst loading, initial pollutant concentration, light wavelength, and oxidizing species, all of which could have a significant impact on the rate of organic pollutant's degradation. Furthermore, the recyclability of the catalyst and its photocatalytic activity mechanisms are thoroughly discussed. Numerous case studies are systematically presented. Moreover, future prospects and major challenges are highlighted.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams UniversityCairo11566Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams UniversityCairo11566Egypt
| |
Collapse
|
10
|
Mumtaz N, Javaid A, Imran M, Latif S, Hussain N, Nawaz S, Bilal M. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119690. [PMID: 35772620 DOI: 10.1016/j.envpol.2022.119690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Rapidly expanding water pollution has transformed into significant dangers around the world. In recent years, the pharmaceutical and agriculture field attained enormous progress to meet the necessities of health and life; however, discharge of trace amounts of pharmaceuticals and pesticides into water significantly have a negative influence on human health and the environment. Contamination with these pollutants also constitutes a great threat to the aquatic ecosystem. To deal with the harmful impacts of such pollutants, their expulsion has attracted researchers' interest a lot, and it became essential to figure out techniques suitable for the removal of these pollutants. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose is metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. Among various techniques of wastewater treatment, such as biological treatment, advanced oxidation process and membrane technologies, etc., metal-organic frameworks (MOFs) materials are tailorable porous architectures and are viably used as adsorbents or photocatalysts for wastewater treatment due to their porosity, tunable internal structure, and large surface area. MOFs are synthesized by various methods such as solvo/hydrothermal, sonochemical, microwave and mechanochemical methods. Most common method used for the synthesis of MOFs is solvothermal/hydrothermal methods. Herein, this review aims at providing a comprehensive overview of the latest advances in MOFs and their derivatives, focusing on the following aspects: synthesis and applications. This review comprehensively highlights the application of MOFs and nano-MOFs to remove pharmaceuticals and pesticides from wastewater. For the past years, transition metal-based MOFs have been concentrated as photocatalyst/adsorbents in treating contaminated water. However, work on main group metal-based MOFs is not so abundant. Hence, the foremost objective of this review is to present the latest material and references concerning main group element-based MOFs and nanoscale materials derived from them towards wastewater treatment. It summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future. With the context of recent pioneering studies on main group elements-based MOFs and their derivatives; we hope to stimulate some possibilities for further development, challenges and future perspectives in this field have been highlighted.
Collapse
Affiliation(s)
- Nazish Mumtaz
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
11
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Design of hollow mesoporous TiO2@BiOBr/Bi4O5Br2 type-II/Z-scheme tandem heterojunctions under confinement effect: Improved space charge separation and enhanced visible-light photocatalytic performance. J Colloid Interface Sci 2022; 617:341-352. [DOI: 10.1016/j.jcis.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
|
13
|
Hollow Nanospheres Organized by Ultra-Small CuFe2O4/C Subunits with Efficient Photo-Fenton-like Performance for Antibiotic Degradation and Cr(VI) Reduction. Catalysts 2022. [DOI: 10.3390/catal12070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Hollow transition metal oxides have important applications in the degradation of organic pollutants by a photo-Fenton-like process. Herein, uniform, highly dispersible hollow CuFe2O4/C nanospheres (denoted as CFO/C-PNSs) were prepared by a one-pot approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images verified that the CFO/C-PNS catalyst mainly presents hollow nanosphere morphology with a diameter of 250 ± 30 nm. Surprisingly, the photodegradation test results revealed that CFO/C-PNSs had an excellent photocatalytic performance in the elimination of various organic contaminants under visible light through the efficient Fenton catalytic process. Due to the unique hollow structure formed by the assembly of ultra-small CFO/C subunits, the catalyst exposes more reaction sites, improving its photocatalytic activity. More importantly, the resulting magnetically separable CFO/C-PNSs exhibited excellent stability. Finally, the possible photocatalytic reaction mechanism of the CFO/C-PNSs was proposed, which enables us to have a clearer understanding of the photo-Fenton mechanism. Through a series of characterization and analysis of degradation behavior of CFO/C-PNS samples over antibiotic degradation and Cr(VI) reduction, •OH radicals generated from H2O2 decomposition played an essential role in enhancing the reaction efficiency. The present work offered a convenient method to fabricate hollow transition metal oxides, which provided impetus for further development in environmental and energy applications. Highlights: Novel hollow CuFe2O4/C nanospheres were prepared by a facile and cost-effective method. CuFe2O4/C exhibited excellent photo-Fenton-like performance for antibiotic degradation. Outstanding photocatalytic performance was attributed to the specific hollow cavity-porous structure. A possible mechanism for H2O2 activation over hollow CuFe2O4/C nanospheres was detailed and discussed.
Collapse
|
14
|
He Y, Yin Z, Wang Z, Wang H, Xiong W, Song B, Qin H, Xu P, Zeng G. Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Adv Colloid Interface Sci 2022; 304:102668. [PMID: 35489143 DOI: 10.1016/j.cis.2022.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
MOF-derived multi-metal nanomaterials are attracting numerous attentions in widespread applications such as catalysis, sensors, energy storage and conversion, and environmental remediation. Compared to the monometallic counterparts, the presence of foreign metal is expected to bring new physicochemical properties, thus exhibiting synergistic effect for enhanced performance. MOFs have been proved as a good platform for the fabrication of polymetallic nanomaterials with requisite features. Herein, various design strategies related to constructing multi-metallic nanomaterials from MOFs are summarized for the first time, involving metal nodal substitution, seed epitaxial growth, ion-exchange strategy, guest species encapsulation, solution impregnation and combination with extraneous substrate. Afterwards, the recent advances of multi-metallic nanomaterials for electrocatalytic applications, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), are systematically discussed. Finally, a personal outlook on the future trends and challenges are also presented with hope to enlighten deeper understanding and new thoughts for the development of multi-metal nanomaterials from MOFs.
Collapse
|
15
|
Khan S, Guan Q, Liu Q, Qin Z, Rasheed B, Liang X, Yang X. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152279. [PMID: 34902423 DOI: 10.1016/j.scitotenv.2021.152279] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) have been highly recognized as emerging promising materials for environmental remediation due to their versatile structure and extraordinary properties. Among them, MILs (MIL = Matérial Institute of Lavoisier) are the series of MOFs mostly known for their incredible stability, unique tailorable pore structures, and astounding versatile environmental applications. Their exclusive physiochemical properties and multifunctionality make them proficient for a wide range of pollutants removal in the exposure of versatile harsh environments, compared to other MOFs. This piece of research summarizes the state-of-the-art of development of MILs on the broad spectrum, highlighting their specificities, such as synthesis techniques, modifications and applications for environmental remediation. However, MILs wonderful properties and extraordinary applications in multiple fields, their deployment on practical and commercial-scale pollutants remediation is hindered by insufficient scientific research on underlying mechanisms and relationships. Henceforth, this review not only signifies the emerging importance of MILs for environmental applications but also indicates the urgency to maximize the scientific research for exploitation of MOFs on a practical level and promotion of green technologies for environmental remediation.
Collapse
Affiliation(s)
- Sara Khan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qing Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qian Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zewan Qin
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Bilal Rasheed
- School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
16
|
Ramalingam G, Pachaiappan R, Kumar PS, Dharani S, Rajendran S, Vo DVN, Hoang TKA. Hybrid metal organic frameworks as an Exotic material for the photocatalytic degradation of pollutants present in wastewater: A review. CHEMOSPHERE 2022; 288:132448. [PMID: 34619253 DOI: 10.1016/j.chemosphere.2021.132448] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this world, water is considered as the Elixir for all living creatures. Human life rolls with water, and every activity depends upon water. Worldwide water resources are being contaminated due to the elevation in the population count, industrialization and urbanization. Ejection of chemicals by industries and domestic sewages remains the major reason in the destruction of natural water resources. Contaminated water with harmful microbes, chemical dyes, pesticides, and carcinogens are the root cause of many diseases and deaths of living species. In this scenario, researchers engaged in producing ultra components to remove the contaminants. Metal organic frameworks (MOF) are the desired combination of organic and inorganic materials to achieve the required target. MOFs possess unique characteristics like tunable internal structure, porosity, crystallinity and high surface area which enable them for energy and environmental application. For the past years, MOFs are concentrated more as a photocatalyst in the treatment of polluted water. These research studies discuss the improvement of photocatalytic performance of MOF by the incorporation of metals, metal coupled with nanoparticles like polymers, graphene, etc., into it to achieve the enhanced photocatalytic activity by scavenging entire chemicals and harmful microbes to retain the quality of water. The target of this review article is to focus on the state of the art research work on MOFs in photocatalytic water treatment technique.
Collapse
Affiliation(s)
- Gomathi Ramalingam
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Shanmugapriya Dharani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Tuan K A Hoang
- Institut de Recherche d'Hydro-Québec 1806, boul. Lionel-Boulet, Varennes (Québec), J3X 1S1, Canada
| |
Collapse
|
17
|
Ma S, Yang Y, Li J, Mei Y, Zhu Y, Wu J, Liu L, Yao T, Yang Q. Z-scheme Fe 2(MoO 4) 3/Ag/Ag 3PO 4 heterojunction with enhanced degradation rate by in-situ generated H 2O 2: Turning waste (H 2O 2) into wealth ( •OH). J Colloid Interface Sci 2022; 606:1800-1810. [PMID: 34507171 DOI: 10.1016/j.jcis.2021.08.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/04/2023]
Abstract
Ag3PO4-based photocatalysts have been deeply studied in environmental remediation; however, two problems limited their further application: photocorrosion and quenching effect by in-situ generated H2O2. To addressed these two questions simultaneously, Fe2(MoO4)3 was coupled with Ag3PO4 to construct Z-scheme Fe2(MoO4)3/Ag/Ag3PO4 heterojunction driven by internal-electric-field. The rhodamine B degradation rate of heterojunction was 254 and 7.0 times higher than those of Fe2(MoO4)3 and Ag3PO4, respectively. The outstanding photoactivity was due to the high visible-light harvest, low interface resistance, high separation efficiency of charge carriers, long lifetime of hole (h+) and electron (e-), well-preserved oxidation potential of h+, and especially photocatalytic produced H2O2 inside the system. The in-situ generated H2O2 was fully activated to be •OH on the Fe2(MoO4)3 surface via a Fenton reaction, leading to the elimination of quenching effect on h+ and e-, and generation of more •OH. Additionally, in Z-scheme heterojunction, e- transferred from Ag3PO4 to Fe2(MoO4)3, avoiding the accumulation on Ag3PO4 surface, and hence suppressing the photocorrosion. As a result, 91.2% of degradation efficiency remained after 5 cycles. This paper provides a new method to simultaneously increase the degradation rate by utilizing the in-situ generated H2O2 and improve the stability of Ag3PO4 via constructing a Z-scheme heterojunction.
Collapse
Affiliation(s)
- Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yang Yang
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yuqing Mei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yufeng Zhu
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Li Liu
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
18
|
Fu Y, Yin Z, Qin L, Huang D, Yi H, Liu X, Liu S, Zhang M, Li B, Li L, Wang W, Zhou X, Li Y, Zeng G, Lai C. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126950. [PMID: 34449327 DOI: 10.1016/j.jhazmat.2021.126950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 05/23/2023]
Abstract
With the increasing serious water pollutions, an increasing interest has given for the nanocomposites as environmental catalysts. To date, noble metals-based nanocomposites have been extensively studied by researchers in environmental catalysis. In detail, serving as key functional parts, noble metals are usually combined with other nanomaterials for rationally designing nanocomposites, which exhibit enhanced catalytic properties in pollutants removal. Noble metals in the nanocomposites possess tailored properties, thus playing different important roles in catalytic oxidation reactions for pollutants removal. To motivate the research and elaborate the progress of noble metals, this review (i) summarizes advanced characterization techniques and rising technology of theoretical calculation for evaluating noble metal, and (ii) classifies the roles according to their disparate mechanism in different catalytic oxidation reactions. Meanwhile, the enhanced mechanism and influence factors are discussed. (iii) The conclusions, facing challenges and perspectives are proposed for further development of noble metals-based nanocomposites as environmental catalysts.
Collapse
Affiliation(s)
- Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
19
|
Zeng H, Yi J, Zhang L, Wu H, Wu K, Guo J. Fabrication of MIL-53(Fe)/Ag3PO4 cooperated Photoreduction of Ag0 Particles with outstanding Efficiency on photo-driven H2 Evolution and Pollutant Degradation. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel heterostructure photocatalyst includes photoreduction of Ag0 loaded MIL-53(Fe)/Ag3PO4 (MFAAx) composites were designed and successfully synthesized via hydrothermal with deposition and photoreduction method. Then the physicochemical and optical properties...
Collapse
|
20
|
He Y, Wang D, Li X, Fu Q, Yin L, Yang Q, Chen H. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi 2WO 6 nanosheet under direct sunlight. CHEMOSPHERE 2021; 284:131386. [PMID: 34323787 DOI: 10.1016/j.chemosphere.2021.131386] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/24/2023]
Abstract
Porous metal-organic frameworks (MOFs) with visible-light response have attracted much attention in the field of environmental purification and solar energy conversion. In this study, MIL-100(Fe) was modified with Bi2WO6 nanosheets by a facile hydrothermal method to fabricate a photocatalyst with direct Z-scheme heterojunction. When treating the tetracycline (TC) solution under natural sunlight, 12 wt%MIL-100(Fe)/Bi2WO6 obtained the highest apparent rate constant of (6.59 ± 0.52)✕10-3 L mg-1 min-1, which was 16.1 and 3.9 times than that of pristine MIL-100(Fe) and Bi2WO6, respectively. In addition to explore the feasibility of sunlight-activated MIL-100(Fe)/Bi2WO6 to remove TC under various conditions, the degradation intermediates and their possible transformation pathway were provided with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. The results of Escherichia coli culture demonstrated that the biotoxicity variation of TC solution would first increase and then decrease with the photodegradation time. Ultimately, based on the results of bandgap calculation, radicals trapping and charge flow tracking experiments, the direct Z-scheme heterojunction between MIL-100(Fe) and Bi2WO6 nanosheets was confirmed and the photocatalytic mechanism for TC degradation was rationally proposed. This work enriched MOFs-based heterojunction photocatalysts and provided a promising method to eliminate hazardous TC from aqueous solution.
Collapse
Affiliation(s)
- Yanying He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Linmiao Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, PR China
| |
Collapse
|
21
|
Liu M, Xing Z, Li Z, Zhou W. Recent advances in core–shell metal organic frame-based photocatalysts for solar energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Hu M, Zhu P, Liu M, Xu J, Duan M, Lin J. Preparation, performance and mechanism of p-Ag3PO4/n-ZnO/C heterojunction with IRMOF-3 as precursor for efficient photodegradation of norfloxacin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Bhattacharyya P, Basak S, Chakrabarti S. Advancement towards Antibiotic Remediation: Heterostructure and Composite materials. ChemistrySelect 2021. [DOI: 10.1002/slct.202100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Puja Bhattacharyya
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sanchari Basak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
24
|
Du C, Zhang Z, Yu G, Wu H, Chen H, Zhou L, Zhang Y, Su Y, Tan S, Yang L, Song J, Wang S. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. CHEMOSPHERE 2021; 272:129501. [PMID: 33486457 DOI: 10.1016/j.chemosphere.2020.129501] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic abuse has led to serious water pollution and severe harm to human health; therefore, there is an urgent need for antibiotic removal from water sources. Adsorption and photodegradation are two ideal water treatment methods because they are cheap, simple to operate, and reusable. Metal organic frameworks (MOFs) are excellent adsorbents and photocatalysts because of their high porosity, adaptability, and good crystal form. The aim of this study is to suggest ways to overcome the limitations of adsorption and photocatalysis treatment methods by reviewing previous applications of MOFs to antibiotic adsorption and photocatalysis. The different factors influencing these processes are also discussed, as well as the various adsorption and photocatalysis mechanisms. This study provides a valuable resource for researchers intending to use MOFs to remove antibiotics from water bodies.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Zhuo Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China.
| | - Haipeng Wu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yihai Su
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shiyang Tan
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Yang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiahao Song
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
25
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Zhang R, Li Y, Zhang W, Sheng Y, Wang M, Liu J, Liu Y, Zhao C, Zeng K. Fabrication of Cu2O/Bi2S3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Jin H, Dong J, Qu X. Magnetic organic polymer gel decorating Ag3PO4 as Z-scheme photocatalyst for water decontamination. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Insights into the Stability and Activity of MIL-53(Fe) in Solar Photocatalytic Oxidation Processes in Water. Catalysts 2021. [DOI: 10.3390/catal11040448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MIL-53(Fe) is a metal organic framework that has been recently considered a heterogeneous photocatalyst candidate for the degradation of water pollutants under visible or solar radiation, though stability studies are rather scarce in the literature. In this work, MIL-53(Fe) was successfully synthesized by a solvothermal method and fully characterized by X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption–desorption isotherm, Thermogravimetric analysis coupled with mass spectrometry (TGA-MS), UV-visible diffuse reflectance spectroscopy (DRS), elemental analysis and wavelength dispersive X-ray fluorescence (WDXRF). The effects of pH, temperature, solar radiation and the presence of oxidants (i.e., electron acceptors) such as ozone, persulfate and hydrogen peroxide on the stability of MIL-53(Fe) in water were investigated. The as-synthetized MIL-53(Fe) exhibited relatively good stability in water at pH 4 but suffered fast hydrolysis at alkaline conditions. At pH 4–5, temperature, radiation (solar and visible radiation) and oxidants exerted negative effect on the stability of the metal–organic framework (MOF) in water, resulting in non-negligible amounts of metal (iron) and linker (terephthalic acid, H2BDC) leached out from MIL-53(Fe). The photocatalytic activity of MIL-53(Fe) under simulated solar radiation was studied using phenol and metoprolol as target pollutants. MIL-53(Fe) on its own removed less than 10% of the pollutants after 3 h of irradiation, while in the presence of ozone, persulfate or hydrogen peroxide, complete elimination of pollutants was achieved within 2 h of exposure to radiation. However, the presence of oxidants and the formation of some reaction intermediates (e.g., short-chain carboxylic acids) accelerated MIL-53(Fe) decarboxylation. The findings of this work suggest that MIL-53(Fe) should not be recommended as a heterogeneous photocatalyst for water treatment before carrying out a careful evaluation of its stability under actual reaction conditions.
Collapse
|
29
|
Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA. Strategic Doping Approach of the Fe-BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS OMEGA 2021; 6:1575-1583. [PMID: 33490817 PMCID: PMC7818580 DOI: 10.1021/acsomega.0c05398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The present study describes the strategic doping of Fe metal ions into a BiOI microstructure using ex situ and in situ processes to synthesize a Fe-BiOI microstructure and their effect on photocatalytic degradation of tetracycline (TC). The data suggested that in situ Fe-BiOI (Fe-BiOI-In) has superior performance compared to ex situ Fe-BiOI (Fe-BiOI-Ex) due to the uniform dispersion of Fe within the Fe-BiOI material. Calculated bandgaps ∼1.8, ∼1.5, and 2.4 eV were observed for BiOI (without Fe), Fe-BiOI-In, and Fe-BiOI-Ex, respectively. Interestingly, Fe incorporation within BiOI might decrease the bandgap in Fe-BiOI-In due to the uniform distribution of metal ions, whereas increasing the bandgap in Fe-BiOI-Ex attributed to nonuniform distribution or agglomeration of metal ions. The uniform dispersion of Fe within Fe-BiOI modulates electronic properties as well as increases the exposure of Fe ions with TC, thereby higher degradation efficiency of TC. The in situ Fe-BiOI material shows 67 and 100% degradation of TC at 10 and 1 mg/L, respectively. The TC degradation was also found to be pH-dependent; when increasing the pH value up to 10, 94% degradation was achieved at 10 mg/L within 60 min of solar irradiation. The analysis was also performed over BiOI, which proves that Fe has a profound effect on TC degradation as Fe(II) tends to trigger oxidation-reduction by utilizing the chelate formation tendency of TC. Therefore, the prepared Fe-BiOI-In has the potential ability to degrade pharmaceutical compounds, especially, TC from wastewater.
Collapse
Affiliation(s)
- Neetu Talreja
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
| | - Mohammad Ashfaq
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Advanced
Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,
Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
- School
of Life Science, BS AbdurRahaman Crescent
Institute of Science and Technology, Chennai 600048, India
| | - Divya Chauhan
- Department
of Chemical and Biomedical Engineering, University of South Florida, Tampa 33620, Florida, United States
| | - Adriana C. Mera
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
| | - C. A. Rodríguez
- Multidisciplinary
Research Institute for Science and Technology, IIMCT, University of La Serena, La Serena 1700000, Chile
- Department
of Chemistry, Faculty of Sciences, University of La Serena, La Serena 1700000, Chile
| |
Collapse
|
30
|
Zhang H, Zhou L, Li J, Rong S, Jiang J, Liu S. Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/β-CDP Composite Hydrogel. Front Chem 2021; 8:593730. [PMID: 33520930 PMCID: PMC7845018 DOI: 10.3389/fchem.2020.593730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we report a novel carboxymethyl cellulose (CMC)/MIL-101 (Fe)/poly(β-cyclodextrin) (β-CDP) hydrogel with high photocatalytic activity. β-CDP can significantly enhance the photoactivity of MIL-101(Fe) in the hydrogel prepared by a simple solvothermal method. The structure and property of this composite hydrogel were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Tetracycline was selected as a model pharmaceutical antibiotic to evaluate the photocatalytic activity of the composite hydrogel under visible light irradiation and darkness, respectively. This composite hydrogel shows excellent activity for degrading pharmaceutical antibiotics under visible light irradiation. The increased photocatalytic activity can be attributed to β-CDP, which acts as a promoter and affords an efficient separation of photogenerated electron-hole pairs of MIL-101(Fe). Moreover, the composite hydrogel is shown to have good water retainability. The hydrogel is inexpensive and shows high photocatalytic activity. Hence, it can be used as an efficient photocatalytic material.
Collapse
Affiliation(s)
- Hui Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Sijia Rong
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jianping Jiang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Shengquan Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
31
|
Luo J, Chen J, Chen X, Ning X, Zhan L, Zhou X. Construction of cerium oxide nanoparticles immobilized on the surface of zinc vanadate nanoflowers for accelerated photocatalytic degradation of tetracycline under visible light irradiation. J Colloid Interface Sci 2020; 587:831-844. [PMID: 33248700 DOI: 10.1016/j.jcis.2020.11.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022]
Abstract
Construction of Z-scheme heterojunction has been deemed to be an effective and promising approach to boost the photocatalytic activity on account of accelerating the separation efficiency of the photogenerated carriers and maintaining the strong redox ability. Herein, an attractive CeO2/Zn3V2O8 Z-scheme heterojunction photocatalyst was rationally constructed by zero-dimensional (0D) CeO2 nanoparticles immobilized on the surface of three-dimensional (3D) Zn3V2O8 nanoflowers using a simple mixing method, and applied to the photocatalytic degradation of tetracycline (TC) under visible light irradiation. As expected, it was observed that the prepared CeO2/Zn3V2O8 hybrid illustrated significantly boosted the photocatalytic activity for the elimination of TC compared to pure Zn3V2O8. More importantly, the optimized CeO2(40 wt%)/Zn3V2O8 hybrid owned the largest elimination rate of TC with 1.13 × 10-2 min-1, which was around 8.1 and 3.8 times as high as single CeO2 (0.14 × 10-2 min-1) and Zn3V2O8 (0.30 × 10-2 min-1), respectively. The appreciable performance improvement was mainly ascribed to the formation of Z-scheme heterojunction between CeO2 and Zn3V2O8, facilitating the transfer rate of photogenerated carriers and remaining the high reducibility of photoexcited electrons in CeO2 and strong oxidizability of photoinduced holes in Zn3V2O8. Active species capture experiments and electron spin resonance spectra showed that superoxide radicals and holes were the main active species for TC degradation. Besides, the possible degradation pathways of TC were speculated by identifying degradation intermediates, and the reasonable degradation mechanism including migration and transport behaviors of charge carriers and generation processes of reactive species were revealed in depth. This investigation enriches Zn3V2O8-based Z-scheme heterojunction photocatalytic system and offers a new inspiration for the construction and fabrication of high-efficiency Z-scheme heterojunction photocatalysts to remove the antibiotics from wastewater.
Collapse
Affiliation(s)
- Jin Luo
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China.
| | - Jiayi Chen
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaoting Chen
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaomei Ning
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
32
|
Xu J, Xu J, Jiang S, Cao Y, Xu K, Zhang Q, Wang L. Facile synthesis of a novel Ag 3PO 4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37839-37851. [PMID: 32613509 DOI: 10.1007/s11356-020-09903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel visible light-driven heterostructure Ag3PO4/MIL-100(Fe) composite photocatalyst was successfully synthesized via facile chemical deposition method at room temperature. Especially when the mass ratio of Ag3PO4 was 20% of MIL-100(Fe) (APM-2), it displayed the best photocatalytic performance, for which the degradation rate of tetracycline (TC) in conventional environment was 6.8 times higher than that of bare MIL-100(Fe). In addition, the effects of the initial concentration and pH of the solution on the degradation of tetracycline were also studied, and the results showed that the degradation of tetracycline was more favorable in a weakly alkaline environment. The excellent performance of Ag3PO4/MIL-100(Fe) composites was attributed to the fact that on the basis of having adequate photocatalytic active sites, modifying MIL-100(Fe) with an appropriate amount of Ag3PO4 particles can more effectively separate photogenerated electron-hole pairs. Five cycles of experiments showed that APM-2 has good photostability. Lastly, it was proved through quenching experiments that •O2-, h+, and •OH all played corresponding roles in the degradation process, and a possible Z-scheme heterostructure photocatalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Jun Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jinmei Xu
- Changzhou University Huaide College, Jingjiang, 214500, China
| | - Shanqing Jiang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yu Cao
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Kailin Xu
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Liping Wang
- School of Environmental & Safety Engineering, Changzhou University, Changzhou, 213164, China.
- Changzhou University Huaide College, Jingjiang, 214500, China.
| |
Collapse
|
33
|
Yang Y, Li X, Zhou C, Xiong W, Zeng G, Huang D, Zhang C, Wang W, Song B, Tang X, Li X, Guo H. Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review. WATER RESEARCH 2020; 184:116200. [PMID: 32712506 DOI: 10.1016/j.watres.2020.116200] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Advanced oxidation processes (AOPs) have attracted much interest in the field of water treatment owing to their high removal efficiency for refractory organic contaminants. Graphitic carbon nitride (g-C3N4)-based catalysts with high performance and cost effectiveness are promising heterogeneous catalysts for AOPs. Most research on g-C3N4-based catalysts focuses on photocatalytic oxidation, but increasingly researchers are paying attention to the application of g-C3N4-based catalysts in other AOPs beyond photocatalysis. This review aims to concisely highlight recent state-of-the-art progress of g-C3N4-based catalysts in AOPs beyond photocatalysis. Emphasis is made on the application of g-C3N4-based catalysts in three classical AOPs including Fenton-based processes, catalytic ozonation and persulfates activation. The catalytic performance and involved mechanism of g-C3N4-based catalysts in these AOPs are discussed in detail. Meanwhile, the effect of water chemistry including pH, water temperature, natural organic matter, inorganic anions and dissolved oxygen on the catalytic performance of g-C3N4-based catalysts are summarized. Moreover, the reusability, stability and toxicity of g-C3N4-based catalysts in water treatment are also mentioned. Lastly, perspectives on the major challenges and opportunities of g-C3N4-based catalysts in these AOPs are proposed for better developments in the future research.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
34
|
Chen J, Zhang X, Bi F, Zhang X, Yang Y, Wang Y. A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J Colloid Interface Sci 2020; 571:275-284. [DOI: 10.1016/j.jcis.2020.03.055] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 11/30/2022]
|
35
|
Yang Y, Zeng G, Huang D, Zhang C, He D, Zhou C, Wang W, Xiong W, Song B, Yi H, Ye S, Ren X. In Situ Grown Single-Atom Cobalt on Polymeric Carbon Nitride with Bidentate Ligand for Efficient Photocatalytic Degradation of Refractory Antibiotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001634. [PMID: 32567191 DOI: 10.1002/smll.202001634] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Semiconductor photocatalysis is a promising technology to tackle refractory antibiotics contamination in water. Herein, a facile in situ growth strategy is developed to implant single-atom cobalt in polymeric carbon nitride (pCN) via the bidentate ligand for efficient photocatalytic degradation of oxytetracycline (OTC). The atomic characterizations indicate that single-atom cobalt is successfully anchored on pCN by covalently forming the CoO bond and CoN bond, which will strengthen the interaction between single-atom cobalt and pCN. This single-atom cobalt can efficiently expand optical absorption, increase electron density, facilitate charge separation and transfer, and promote OTC degradation. As the optimal sample, Co(1.28%)pCN presents an outstanding apparent rate constant for OTC degradation (0.038 min-1 ) under visible light irradiation, which is about 3.7 times than that of the pristine pCN. The electron spin resonance (ESR) tests and reactive species trapping experiments demonstrate that the 1 O2 , h+ , •O2- , and •OH are responsible for OTC degradation. This work develops a new way to construct single-atom-modified pCN and provides a green and highly efficient strategy for refractory antibiotics removal.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chen Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Donghui He
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Shujing Ye
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
36
|
Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J Colloid Interface Sci 2020; 574:364-376. [PMID: 32339819 DOI: 10.1016/j.jcis.2020.04.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/08/2023]
Abstract
Iron-based metal-organic frameworks (MOFs) with low cost and excellent photocatalytic potential are extremely attractive in the field of energy utilization and environmental remediation. In this study, a novel In2S3/MIL-100(Fe) photocatalyst was successfully synthesized by a facile solvothermal method for the first time. Several technologies (such as X-ray diffraction, scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy) were used to characterize the as-obtained samples and demonstrate the successful combination of MIL-100(Fe) and In2S3. Experimental results showed that 18% of tetracycline (TC) was adsorbed under dark condition and another 70% of TC was degraded under visible-light irradiation when treating 100 mL of TC solution (10 mg/L) with 30 mg of In2S3/MIL-100(Fe) composites. The corresponding TC removal efficiency was almost 1.9 and 1.6 times higher than that of pure MIL-100(Fe) and In2S3, respectively. The mechanism investigations revealed that the heterojunction composite exhibited superior charge transfer than either MIL-100(Fe) or In2S3, and this caused more efficient separation of electron-hole pairs. As a result, more radicals and holes were generated in the composite, leading to better photocatalytic performance. This work highlights the powerful combination of MOFs and semiconductor, which is a promising approach to fabricate heterojunction photocatalyst for wastewater purification.
Collapse
|