1
|
Liu X, Xu H, Li J, Liu Y, Fan H. Review of Liquid Metal Fiber Based Biosensors and Bioelectronics. BIOSENSORS 2024; 14:490. [PMID: 39451703 PMCID: PMC11506175 DOI: 10.3390/bios14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Collapse
Affiliation(s)
| | | | | | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| |
Collapse
|
2
|
Naz A, Meng Y, Luo J, Khan IA, Abbas R, Yu S, Wei J. Cutting-Edge Perovskite-Based Flexible Pressure Sensors Made Possible by Piezoelectric Innovation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4196. [PMID: 39274586 PMCID: PMC11395823 DOI: 10.3390/ma17174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
In the area of flexible electronics, pressure sensors are a widely utilized variety of flexible electronics that are both indispensable and prevalent. The importance of pressure sensors in various fields is currently increasing, leading to the exploration of materials with unique structural and piezoelectric properties. Perovskite-based materials are ideal for use as flexible pressure sensors (FPSs) due to their flexibility, chemical composition, strain tolerance, high piezoelectric and piezoresistive properties, and potential integration with other technologies. This article presents a comprehensive study of perovskite-based materials used in FPSs and discusses their components, performance, and applications in detecting human movement, electronic skin, and wireless monitoring. This work also discusses challenges like material instability, durability, and toxicity, the limited widespread application due to environmental factors and toxicity concerns, and complex fabrication and future directions for perovskite-based FPSs, providing valuable insights for researchers in structural health monitoring, physical health monitoring, and industrial applications.
Collapse
Affiliation(s)
- Adeela Naz
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuan Meng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Imtiaz Ahmad Khan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Rimsha Abbas
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers (Basel) 2024; 16:514. [PMID: 38399892 PMCID: PMC10893451 DOI: 10.3390/polym16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future.
Collapse
Affiliation(s)
- Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (I.T.); (E.C.); (M.K.)
| | | | | | | |
Collapse
|
4
|
Fang D, Ding S, Zhou Q, Zhao D, Zhong J, Zhou B. Crosstalk-Free Position Mapping for One-Step Reconstruction of Surface Topological Information via Eigenfrequency-Registered Wearable Interface. ACS NANO 2024; 18:1157-1171. [PMID: 38147575 DOI: 10.1021/acsnano.3c11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Exploring flexible tactile sensors capable of recognizing surface information is significant for the development of virtual reality, artificial intelligence, soft robotics, and human-machine interactions (HMI). However, it is still a challenge for current tactile sensors to efficiently recognize the surface pattern information while maintaining the simplicity of the overall system. In this study, cantilever beam-like magnetized micropillars (MMPs) with height gradients are assembled as a position-registered array for rapid recognition of surface pattern information. After crossing the surface location with convex patterns, the deformed MMPs undergo an intrinsic oscillating process to induce damped electrical signals, which can then be converted to a frequency domain for eigenfrequency extraction. Via precisely defining the specific eigenfrequencies of different MMPs, position mapping is realized in crosstalk-free behavior even though all signals are processed by one communication channel and a pair of electrodes. With a customized LabVIEW program, the surface information (e.g., letters, numbers, and Braille) can be accurately reconstructed by the frequency sequence produced in a single scanning procedure. We expect that the proposed interface can be a convenient and powerful platform for intelligent surface information perception and an HMI system in the future.
Collapse
Affiliation(s)
- Dan Fang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Qian Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
5
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
6
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
8
|
Zou S, Li D, He C, Wang X, Cheng D, Cai G. Scalable Fabrication of an MXene/Cotton/Spandex Yarn for Intelligent Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10994-11003. [PMID: 36789744 DOI: 10.1021/acsami.2c18425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.
Collapse
Affiliation(s)
- Sizhuo Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Daiqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Chengen He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Brunswick 3056, Australia
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| |
Collapse
|
9
|
Dai Y, Qi K, Ou K, Song Y, Zhou Y, Zhou M, Song H, He J, Wang H, Wang R. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11244-11258. [PMID: 36791272 DOI: 10.1021/acsami.2c20322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging intelligent piezoresistive yarn/textile-based sensors are of paramount importance for skin-interface electronics, owing to their unparalleled features including softness, breathability, and easy integration with functional devices. However, employing a facile way to fabricate 1D sensing yarns with mechanical robustness, multi-functional integration, and comfortability is still demanded for satisfying the practical applications. Herein, a facile one-step synchronous conjugated electrospinning and electrospraying technique is innovatively employed to continuously construct an Ag NW-embedded polyurethane (PU) nanofiber sensing yarn (AENSY) with hierarchical architecture. This 1D AENSY with weavability and stretchability can be woven into AENSY textile-based sensors integrated with functions of strain and pressure sensing. In this embedded multi-scale architecture, Ag NWs are evenly embedded and locked in the oriented and twisted PU nanofiber (PUNF) scaffold, forming the hierarchical mechanical sensing layer on the surface of the AENSY with favorable stability. Meanwhile, the presence of the elastic PUNFs enhances porosity, elasticity, and considerable deformation space, which in turn endow the AENSY textile-based sensor with a gauge factor (GF) up to 1010, a pressure sensitivity up to 16.7 N-1, high stretchability up to 160%, and high stability under long-term cycles. In addition, the AENSY textile-based sensor exhibits light weight and the unique advantage of skin-friendliness with the human body, which can be directly and conformally attached to the curved human skin to monitor the various human movements. Furthermore, the weavable AENSYs can be integrated into smart textiles with sensing arrays, which are capable for spatial pressure and strain mapping. Thus, the continuous one-step developing process and the stable embedded-twisted fiber structure provide a promising strategy to develop innovative smart yarns and textiles for personalized healthcare and human-machine interfaces.
Collapse
Affiliation(s)
- Yunling Dai
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kun Qi
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kangkang Ou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
| | - Yutang Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Yuman Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Meiling Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongjing Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jianxin He
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongbo Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Rongwu Wang
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| |
Collapse
|
10
|
Kamireddi D, Street RM, Schauer CL. Electrospun nanoyarns: A comprehensive review of manufacturing methods and applications. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Divya Kamireddi
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | - Reva M. Street
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | - Caroline L. Schauer
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| |
Collapse
|
11
|
The Programmable Design of Large-Area Piezoresistive Textile Sensors Using Manufacturing by Jacquard Processing. Polymers (Basel) 2022; 15:polym15010078. [PMID: 36616428 PMCID: PMC9824245 DOI: 10.3390/polym15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Among wearable e-textiles, conductive textile yarns are of particular interest because they can be used as flexible and wearable sensors without affecting the usual properties and comfort of the textiles. Firstly, this study proposed three types of piezoresistive textile sensors, namely, single-layer, double-layer, and quadruple-layer, to be made by the Jacquard processing method. This method enables the programmable design of the sensor’s structure and customizes the sensor’s sensitivity to work more efficiently in personalized applications. Secondly, the sensor range and coefficient of determination showed that the sensor is reliable and suitable for many applications. The dimensions of the proposed sensors are 20 × 20 cm, and the thicknesses are under 0.52 mm. The entire area of the sensor is a pressure-sensitive spot. Thirdly, the effect of layer density on the performance of the sensors showed that the single-layer pressure sensor has a thinner thickness and faster response time than the multilayer pressure sensor. Moreover, the sensors have a quick response time (<50 ms) and small hysteresis. Finally, the hysteresis will increase according to the number of conductive layers. Many tests were carried out, which can provide an excellent knowledge database in the context of large-area piezoresistive textile sensors using manufacturing by Jacquard processing. The effects of the percolation of CNTs, thickness, and sheet resistance on the performance of sensors were investigated. The structural and surface morphology of coating samples and SWCNTs were evaluated by using a scanning electron microscope. The structure of the proposed sensor is expected to be an essential step toward realizing wearable signal sensing for next-generation personalized applications.
Collapse
|
12
|
Yin J, Reddy VS, Chinnappan A, Ramakrishna S, Xu L. Electrospun Micro/Nanofiber with Various Structures and Functions for Wearable Physical Sensors. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2158467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jiangsu Engineering Research Center of Textile, Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, China
| |
Collapse
|
13
|
Gassab M, Brefuel N, Sylvestre A, Dridi C, Basrour S. Structural, thermal and dielectric properties of glycerolized hydrogen‐bonded polyvinyl alcohol films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Gassab
- NANOMISENE Laboratory, LR16CRMN01 Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole Sahloul, Sousse Tunisia
- University of Sousse High School of Sciences and Technology of Hammam Sousse Sousse Tunisia
| | - Nicolas Brefuel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab Grenoble France
| | - Alain Sylvestre
- Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab Grenoble France
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01 Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole Sahloul, Sousse Tunisia
| | - Skandar Basrour
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA Grenoble France
| |
Collapse
|
14
|
Wang H, Feng L, Zeng J, Chen L, Chen A, Liu M, Xiong J. Simulation and experimental study of parameters in centrifugal electrospinning: Effects of rotor form on fiber formation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Han Wang
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| | - Liang Feng
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| | - Jun Zeng
- Foshan Nanofiberlabs Co., Ltd Foshan Guangdong Province China
| | - Lingmin Chen
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| | - An Chen
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| | - Maolin Liu
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| | - Jingang Xiong
- Guangdong Provincial Key Laboratory of Micro‐nano Manufacturing Technology and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering Guangdong University of Technology Guangzhou Guangdong Province China
| |
Collapse
|
15
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Rehan M, Saleem MM, Tiwana MI, Shakoor RI, Cheung R. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems. SENSORS 2022; 22:s22093500. [PMID: 35591190 PMCID: PMC9105633 DOI: 10.3390/s22093500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
This paper presents a multi-axis low-cost soft magnetic tactile sensor with a high force range for force feedback in robotic surgical systems. The proposed sensor is designed to fully decouple the output response for normal, shear and angular forces. The proposed sensor is fabricated using rapid prototyping techniques and utilizes Neodymium magnets embedded in an elastomer over Hall sensors such that their displacement produces a voltage change that can be used to calculate the applied force. The initial spacing between the magnets and the Hall sensors is optimized to achieve a large displacement range using finite element method (FEM) simulations. The experimental characterization of the proposed sensor is performed for applied force in normal, shear and 45° angular direction. The force sensitivity of the proposed sensor in normal, shear and angular directions is 16 mV/N, 30 mV/N and 81 mV/N, respectively, with minimum mechanical crosstalk. The force range for the normal, shear and angular direction is obtained as 0–20 N, 0–3.5 N and 0–1.5 N, respectively. The proposed sensor shows a perfectly linear behavior and a low hysteresis error of 8.3%, making it suitable for tactile sensing and biomedical applications. The effect of the material properties of the elastomer on force ranges and sensitivity values of the proposed sensor is also discussed.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Mechatronics Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (M.R.); (M.I.T.)
| | - Muhammad Mubasher Saleem
- Department of Mechatronics Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (M.R.); (M.I.T.)
- National Centre of Robotics and Automation (NCRA), Islamabad 44000, Pakistan;
- Correspondence:
| | - Mohsin Islam Tiwana
- Department of Mechatronics Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; (M.R.); (M.I.T.)
- National Centre of Robotics and Automation (NCRA), Islamabad 44000, Pakistan;
| | - Rana Iqtidar Shakoor
- National Centre of Robotics and Automation (NCRA), Islamabad 44000, Pakistan;
- Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan
| | - Rebecca Cheung
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics Centre, Edinburgh EH9 3FF, UK;
| |
Collapse
|
17
|
Shah MA, Pirzada BM, Price G, Shibiru AL, Qurashi A. Applications of nanotechnology in smart textile industry: A critical review. J Adv Res 2022; 38:55-75. [PMID: 35572402 PMCID: PMC9091772 DOI: 10.1016/j.jare.2022.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background In recent years, nanotechnology has been playing an important role in designing smart fabrics. Nanomaterials have been employed to introduce in a sustainable manner, antimicrobial, ultraviolet resistant, electrically conductive, optical, hydrophobic and flame-retardant properties into textiles and garments. Nanomaterial based smart devices are now also being integrated with the textiles so as to perform various functions such as energy harvesting and storage, sensing, drug release and optics. These advancements have found wide applications in the fashion industry and are being developed for wider use in defence, healthcare and on-body energy harnessing applications. Aim of review The objective of this work is to provide an insight into the current trends of using nanotechnology in the modern textile industries and to inspire and anticipate further research in this field. This review provides an overview of the most current advances concerning on-body electronics research and the wonders which could be realized by nanomaterials in modern textiles in terms of total energy reliance on our clothes. Key scientific concepts of review The work underlines the various methods and techniques for the functionalization of nanomaterials and their integration into textiles with an emphasis on cost-effectiveness, comfort, wearability, energy conversion efficiency and eco-sustainability. The most recent trends of developing various nanogenerators, supercapacitors and photoelectronic devices on the fabric are highlighted, with special emphasis on the efficiency and wearability of the textile. The potential nanotoxicity associated with the processed textiles due to the tendency of these nanomaterials to leach into the environment along with possible remediation measures are also discussed. Finally, the future outlook regarding progress in the integration of smart nano-devices on textile fabrics is provided.
Collapse
Affiliation(s)
- Mudasir Akbar Shah
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gareth Price
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abel L. Shibiru
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
18
|
Wei Y, Hao B, Wang Y, Wang Y, Xiao H, Li L, Huang X, Shi B. Tannery solid waste-derived cross-scale deformable piezoresistive sensors for monitoring human body motions. JOURNAL OF MATERIALS CHEMISTRY C 2022. [DOI: 10.1039/d2tc00718e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cross-scale deformable piezoresistive sensors with a pillar-supported directional multi-layer structure were prepared by using tannery solid wastes, which were highly efficient for monitoring human body motions.
Collapse
Affiliation(s)
- Yingjie Wei
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Baicun Hao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanan Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yujia Wang
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hanzhong Xiao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu 610065, P. R. China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610065, P. R. China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu 610065, P. R. China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
19
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
20
|
Zhong W, Ming X, Jiang H, Ke Y, Ding X, Li M, Jia K, Wang D. Full-Textile Human Motion Detection Systems Integrated by Facile Weaving with Hierarchical Core-Shell Piezoresistive Yarns. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52901-52911. [PMID: 34699163 DOI: 10.1021/acsami.1c14777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tremendous progress of the wearable intelligent system has brought an urgent demand for flexible pressure sensors, especially for those possessing high sensing performances, simple manufacture technology, and efficient integration. In this work, hierarchical core-shell piezoresistive yarns (HCPYs), which contain internal silver-plated nylon electrodes and surface microporous structured carbon nanotubes (CNTs)/thermoplastic polyurethane (TPU) sensing layer, are designed and manufactured via facile wet-spinning accompanied by a water vapor coagulating bath. The obtained HCPY can either be inserted into traditional textiles to assemble a single-pressure sensor, or be woven into a textile-based flexible pressure sensors array with expected size and resolution, without compromising their comfort, breathability, and three-dimensional (3D) conformability. Simultaneously, to further enhance the sensing performance, the surface microporous structures of HCPYs are optimized by altering the treatment humidity and exposure time during the process of water vapor-induced phase separation. The wearable pressure sensors assembled by the optimal HCPY achieved a high sensitivity up to 84.5 N-1, a good durability over 5000-cycle tests, a fast response time of 2.1 ms, and a recovery time of 2.4 ms. Moreover, the wearable pressure sensors have been successfully used to monitor physical signals and human motions. The textile-based flexible pressure sensors array has also been seamlessly integrated with sportswear to detect movements of the elbow joint and map spatial pressure distribution, which makes HCPY a promising candidate for constructing next-generation wearable electronics.
Collapse
Affiliation(s)
- Weibing Zhong
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Xiaojuan Ming
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Haiqing Jiang
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Yiming Ke
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Xincheng Ding
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Kangyu Jia
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China
| |
Collapse
|
21
|
Liu R, He L, Cao M, Sun Z, Zhu R, Li Y. Flexible Temperature Sensors. Front Chem 2021; 9:539678. [PMID: 34631655 PMCID: PMC8492987 DOI: 10.3389/fchem.2021.539678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Temperature reflects the balance between production and dissipate of heat. Flexible temperature sensors are primary sensors used for temperature monitoring. To obtain real-time and accurate information of temperature, different flexible temperature sensors are developed according to the principle of flexible resistance temperature detector (FRTC), flexible thermocouple, flexible thermistor and flexible thermochromic, showing great potential in energy conversion and storage. In order to obtain high integration and multifunction, various flexible temperature sensors are studied and optimized, including active-matrix flexible temperature sensor, self-powered flexible temperature sensor, self-healing flexible temperature sensor and self-cleaning flexible temperature sensor. This review focuses on the structure, material, fabrication and performance of flexible temperature sensors. Also, some typical applications of flexible temperature sensors are discussed and summarized.
Collapse
Affiliation(s)
- Ruping Liu
- Beijing Institute of Graphic Communication, Beijing, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Meijuan Cao
- Beijing Institute of Graphic Communication, Beijing, China
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, Beijing, China
| | - Ruiqi Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing, China
| |
Collapse
|
22
|
Huang L, Zeng Y, Liu X, Tang D. Pressure-Based Immunoassays with Versatile Electronic Sensors for Carcinoembryonic Antigen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46440-46450. [PMID: 34547887 DOI: 10.1021/acsami.1c16514] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pressure-based immunoassays have been studied for point-of-care testing for which increasing the sensitivity is still a challenge. In this study, we described an enhanced pressure-based immunoassay with a versatile electronic sensor for the sensitive biological analysis. The versatile electronic sensor had multifunctional sensing capabilities with temperature and pressure recording. Magnetic bead-modified capture antibody and platinum nanoparticle-labeled detection antibody were used as the biorecognition element of the target carcinoembryonic antigen (CEA) (as a model analyte) and would form a sandwich-type immune complex with CEA. After simple magnetic separation, this complex was transferred into the detection chamber, which contained both hydrogen peroxide (H2O2) and 3,3',5,5'-tetramethylbenzidine (TMB). With the catalytic ability of PtNPs, the "H2O2-TMB-PtNPs" system was catalyzed to generate a large amount of oxygen (O2) and photothermal agent of oxidizer TMB (ox-TMB). Meanwhile, in a sealed chamber, further irradiation with an 808 nm near-infrared laser led to a triple-step signal amplification strategy of pressure increase, temperature increase, and gas thermal expansion to receive a strong electrical signal through the electronic sensor in real time. Thus, the amplified electrical signal from the electronic sensor could reveal the target concentration. In addition, we also verified that the synergistic system with two physical quantities had a lower limit of detection and a wider detection range compared to the detection system with a single physical quantity. In general, this immunoassay not only helped in exploring an effective signal amplification pathway but also offered an opportunity for the development of versatile electronic sensors in point-of-care settings.
Collapse
Affiliation(s)
- Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- Chongqing Vocational Institute of Engineering, Chongqing 402260, P. R. China
| |
Collapse
|
23
|
Affiliation(s)
- Jia-wen Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yuan-yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Kubicek J, Fiedorova K, Vilimek D, Cerny M, Penhaker M, Janura M, Rosicky J. Recent Trends, Construction and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review. IEEE Rev Biomed Eng 2020; 15:36-60. [PMID: 33301410 DOI: 10.1109/rbme.2020.3043623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the area of biomedical signal monitoring, wearable electronics represents a dynamically growing field with a significant impact on the market of commercial products of biomedical signal monitoring and acquisition, as well as consumer electronic for vital functions monitoring. Since the electrodes are perceived as one of the most important part of the biomedical signal monitoring, they have been one of the most frequent subjects in the research community. Electronic textile (e-textile), also called smart textile represents a modern trend in the wearable electronics, integrating of functional materials with common clothing with the goal to realize the devices, which include sensors, antennas, energy harvesters and advanced textiles for self-cooling and heating. The area of textile electrodes and e-textile is perceived as a multidisciplinary field, integrating material engineering, chemistry, and biomedical engineering. In this review, we provide a comprehensive view on this area. This multidisciplinary review integrates the e-textile characteristics, materials and manufacturing of the textile electrodes, noise influence on the e-textiles performance, and mainly applications of the textile electrodes for biomedical signal monitoring and acquisition, including pressure sensors, electrocardiography, electromyography, electroencephalography and electrooculography monitoring.
Collapse
|
25
|
Ullrich J, Eisenreich M, Zimmermann Y, Mayer D, Koehne N, Tschannett JF, Mahmud-Ali A, Bechtold T. Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5150. [PMID: 33207615 PMCID: PMC7696665 DOI: 10.3390/ma13225150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
The design of flexible sensors which can be incorporated in textile structures is of decisive importance for the future development of wearables. In addition to their technical functionality, the materials chosen to construct the sensor should be nontoxic, affordable, and compatible with future recycling. Conductive fibres were produced by incorporation of carbon black into regenerated cellulose fibres. By incorporation of 23 wt.% and 27 wt.% carbon black, the surface resistance of the fibres reduced from 1.3 × 1010 Ω·cm for standard viscose fibres to 2.7 × 103 and 475 Ω·cm, respectively. Fibre tenacity reduced to 30-50% of a standard viscose; however, it was sufficient to allow processing of the material in standard textile operations. A fibre blend of the conductive viscose fibres with polyester fibres was used to produce a needle-punched nonwoven material with piezo-electric properties, which was used as a pressure sensor in the very low pressure range of 400-1000 Pa. The durability of the sensor was demonstrated in repetitive load/relaxation cycles. As a regenerated cellulose fibre, the carbon-black-incorporated cellulose fibre is compatible with standard textile processing operations and, thus, will be of high interest as a functional element in future wearables.
Collapse
Affiliation(s)
- Julia Ullrich
- Textilforschungsinstitut Thüringen-Vogtland e.V., Zeulenrodaer Straße 42, D-07973 Greiz, Germany; (J.U.); (M.E.); (Y.Z.)
| | - Martin Eisenreich
- Textilforschungsinstitut Thüringen-Vogtland e.V., Zeulenrodaer Straße 42, D-07973 Greiz, Germany; (J.U.); (M.E.); (Y.Z.)
| | - Yvonne Zimmermann
- Textilforschungsinstitut Thüringen-Vogtland e.V., Zeulenrodaer Straße 42, D-07973 Greiz, Germany; (J.U.); (M.E.); (Y.Z.)
| | - Dominik Mayer
- Kelheim Fibres GmbH, Regensburger Straße 109, D-93309 Kelheim, Germany; (D.M.); (N.K.)
| | - Nina Koehne
- Kelheim Fibres GmbH, Regensburger Straße 109, D-93309 Kelheim, Germany; (D.M.); (N.K.)
| | - Jacqueline F. Tschannett
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria; (J.F.T.); (A.M.-A.)
| | - Amalid Mahmud-Ali
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria; (J.F.T.); (A.M.-A.)
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria; (J.F.T.); (A.M.-A.)
| |
Collapse
|
26
|
Solution-Blown Aligned Nanofiber Yarn and Its Application in Yarn-Shaped Supercapacitor. MATERIALS 2020; 13:ma13173778. [PMID: 32859093 PMCID: PMC7504717 DOI: 10.3390/ma13173778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Yarn-shaped supercapacitors with great flexibility are highly anticipated for smart wearable devices. Herein, a device for continuously producing oriented nanofiber yarn based on solution blowing was invented, which was important for the nanofiber yarn electrode to realize mass production. Further, the yarn-shaped supercapacitor was assembled by the yarn electrode with the polypyrrole (PPy) grown on aligned carbon fiber bundles@Polyacrylonitrile nanofibers (CFs@PAN NFs). Electrical conductivity and mechanical properties of the yarn electrode can be improved by the carbon fiber bundles. The specific surface area of the yarn electrode can be enlarged by PPy. The yarn-shaped supercapacitors assembled by the PVA/LiCl/H3PO4 gel electrolyte showed high areal specific capacitance of 353 mF cm-2 at a current density of 0.1 A g-1, and the energy density was 48 μWh cm-2 when the power density was 247 μW cm-2. The supercapacitors also exhibited terrific cycle stability (82% after 20,000 cycles). We also proved that this yarn-shaped supercapacitor could easily power up the light emitting diode. This yarn-shaped supercapacitor was meaningful for the development of the smart wearable devices, especially when combined with clothing or fabrics.
Collapse
|
27
|
Ismar E, Kurşun Bahadir S, Kalaoglu F, Koncar V. Futuristic Clothes: Electronic Textiles and Wearable Technologies. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900092. [PMID: 32642074 PMCID: PMC7330505 DOI: 10.1002/gch2.201900092] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/22/2023]
Abstract
This review summarizes the recent developments and importance of wearable electronic textiles in the past decade. Wearable electronic textiles are an emerging interdisciplinary research area that requires new design approaches. This challenging interdisciplinary research field brings together specialists in electronics, information technology, microsystems, and textiles to make an innovation in the development of wearable electronic products. Wearable electronic textiles play a key role among various technologies (clothing, communication, information, healthcare monitoring, military, sensors, magnetic shielding, etc.). In this review, applications of wearable electronic textiles are described, including an investigation of their fabrication techniques. This review highlights the basic processes, possible applications, and main materials to build wearable E-textiles and combines the fundamentals of E-textiles for the readers who have different backgrounds. Moreover, reliability, reusability, and efficiency of wearable electronic textiles are discussed together with the opportunities and drawbacks of the wearable E-textiles that are addressed in this review article.
Collapse
Affiliation(s)
- Ezgi Ismar
- Nano Science & Nano EngineeringIstanbul Technical UniversityIstanbul34467Turkey
| | - Senem Kurşun Bahadir
- Department of Mechanical EngineeringIstanbul Technical UniversityIstanbul34437Turkey
| | - Fatma Kalaoglu
- Department of Textile EngineeringIstanbul Technical UniversityIstanbul34437Turkey
| | - Vladan Koncar
- GEMTEXUniversity of LilleCité ScientifiqueVilleneuve d'AscqF‐59650France
- École Nationale Supérieure des Arts et Industries Textiles/Génie et Matériaux Textiles laboratory (ENSAIT/GEMTEX)2 Allée Louis et Victor ChampierRoubaixF‐59100France
| |
Collapse
|
28
|
Ahmad Tarar A, Mohammad U, K. Srivastava S. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. BIOSENSORS 2020; 10:E56. [PMID: 32481598 PMCID: PMC7345448 DOI: 10.3390/bios10060056] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Wearable technology and mobile healthcare systems are both increasingly popular solutions to traditional healthcare due to their ease of implementation and cost-effectiveness for remote health monitoring. Recent advances in research, especially the miniaturization of sensors, have significantly contributed to commercializing the wearable technology. Most of the traditional commercially available sensors are either mechanical or optical, but nowadays transdermal microneedles are also being used for micro-sensing such as continuous glucose monitoring. However, there remain certain challenges that need to be addressed before the possibility of large-scale deployment. The biggest challenge faced by all these wearable sensors is our skin, which has an inherent property to resist and protect the body from the outside world. On the other hand, biosensing is not possible without overcoming this resistance. Consequently, understanding the skin structure and its response to different types of sensing is necessary to remove the scientific barriers that are hindering our ability to design more efficient and robust skin sensors. In this article, we review research reports related to three different biosensing modalities that are commonly used along with the challenges faced in their implementation for detection. We believe this review will be of significant use to researchers looking to solve existing problems within the ongoing research in wearable sensors.
Collapse
Affiliation(s)
- Ammar Ahmad Tarar
- Department of Biological Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Umair Mohammad
- Department of Electrical & Computer Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - Soumya K. Srivastava
- Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
29
|
Single-Layer Pressure Textile Sensors with Woven Conductive Yarn Circuit. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, e-textiles have become a fundamental trend in wearable devices. Fabric pressure sensors, as a part of e-textiles, have also received much interest from many researchers all over the world. However, most of the pressure sensors are made of electronic fibers and composed of many layers, including an intermediate layer for sensing the pressure. This paper proposes the model of a single layer pressure sensor with electrodes and conductive fibers intertwined. The plan dimensions of the fabricated sensors are 14 x 14 mm, and the thickness is 0.4 mm. The whole area of the sensor is the pressure-sensitive point. As expected, results demonstrate an electrical resistance change from 283 Ω at the unload pressure to 158 Ω at the load pressure. Besides, sensors have a fast response time (50 ms) and small hysteresis (5.5%). The hysteresis will increase according to the pressure and loading distance, but the change of sensor loading distance is very small. Moreover, the single-layer pressure sensors also show high durability under many working cycles (20,000 cycles) or washing times (50 times). The single-layer pressure sensor is very thin and more flexible than the multi-layer pressure sensor. The structure of this sensor is also expected to bring great benefits to wearable technology in the future.
Collapse
|