1
|
Onuh G, Harries D, Manor O. Depletion-Induced Self-Assembly of Colloidal Particles on a Solid Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8554-8561. [PMID: 38651184 PMCID: PMC11044580 DOI: 10.1021/acs.langmuir.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
We investigate the depletion contributions to the self-assembly of microcolloids on solid substrates. The assembly is driven by the exclusion of nanoparticles and nonadsorbing polymers from the depletion zone between the microcolloids in the liquid and the underlying substrate. The model system consists of 1 μm polystyrene particles that we deposit on a flat glass slab in an electrolyte solution. Using polystyrene nanoparticles and poly(acrylic acid) polymers as depleting agents, we demonstrate in our experiments that nanoparticle concentrations of 0.5% (w/v) support well-ordered packing of microcolloids on glass, while the presence of polymers leads to irregular aggregate deposition structures. A mixture of nanoparticles and polymers enhances the formation of colloidal aggregate and particulate surface coverage compared to using the polymers alone as a depletion agent. Moreover, tuning the polymer ionization state from pH 4 to 9 modifies the polymer conformational state and radius of gyration, which in turn alters the microcolloid deposition from compact multilayers to flocculated structures. Our study provides entropic strategies for manipulating particulate assembly on substrates from dispersed to continuous coatings.
Collapse
Affiliation(s)
- Gideon Onuh
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Daniel Harries
- The
Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience
& Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| | - Ofer Manor
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| |
Collapse
|
2
|
Onuh G, Bar-On R, Manor O. Particle Network Self-Assembly of Similar Size Sub-Micron Calcium Alginate and Polystyrene Particles Atop Glass. Macromol Biosci 2023; 23:e2300219. [PMID: 37551162 DOI: 10.1002/mabi.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Particle-mediated self-assembly, such as nanocomposites, microstructure formation in materials, and core-shell coating of biological particles, offers precise control over the properties of biological materials for applications in drug delivery, tissue engineering, and biosensing. The assembly of similar-sized calcium alginate (CAG) and polystyrene sub-micron particles is studied in an aqueous sodium nitrate solution as a model for particle-mediated self-assembly of biological and synthetic mixed particle species. The objective is to reinforce biological matrices by incorporating synthetic particles to form hybrid particulate networks with tailored properties. By varying the ionic strength of the suspension, the authors alter the energy barriers for particle attachment to each other and to a glass substrate that result from colloidal surface forces. The particles do not show monotonic adsorption trend to glass with ionic strength. Hence, apart from DLVO theory-van der Waals and electrostatic interactions-the authors further consider solvation and bridging interactions in the analysis of the particulate adsorption-coagulation system. CAG particles, which support lower energy barriers to attachment relative to their counterpart polystyrene particles, accumulate as dense aggregates on the glass substrate. Polystyrene particles adsorb simultaneously as detached particles. At high electrolyte concentrations, where electrostatic repulsion is largely screened, the mixture of particles covers most of the glass substrate; the CAG particles form a continuous network throughout the glass substrate with pockets of polystyrene particles. The particulate structure is correlated with the adjustable energy barriers for particle attachment in the suspension.
Collapse
Affiliation(s)
- Gideon Onuh
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Bar-On
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ofer Manor
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
3
|
Bar-On R, Manor O. Connecting Colloidal Forces to the Equilibrium Thickness of Particulate Deposits on a Substrate in Contact with a Suspension Using Classical Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5689-5696. [PMID: 37037185 DOI: 10.1021/acs.langmuir.2c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We study contributions of colloidal forces, i.e., hydrophobic, van der Waals, and electrical double layer interactions, to the thickness of a colloidal deposit in equilibrium with an aqueous suspension by using classical density functional theory, which we expand to obtain a Ginzburg-Landau type energy functional. We regard colloidal particles as clusters of molecular segments-a reminiscent of polymer statistical physics and of the classic Hamaker treatment of van der Waals interactions between particles. This approach appropriately accounts for the integral interaction energy between colloidal particles, which may take magnitudes of many times the characteristic molecular thermal energy kBT (Boltzmann constant times temperature). The analysis highlights the well-known insight that entropy is mostly governed by the solvent molecules and gives physical values to the statistical coefficients in a Ginzburg-Landau type energy functional.
Collapse
Affiliation(s)
- Roi Bar-On
- Applied Mathematics Department, Technion - Israel Institute of Technology, Haifa 3200000, Israel
| | - Ofer Manor
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200000, Israel
| |
Collapse
|
4
|
Howard NS, Archer AJ, Sibley DN, Southee DJ, Wijayantha KGU. Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:929-941. [PMID: 36607610 PMCID: PMC9878724 DOI: 10.1021/acs.langmuir.2c01691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The coffee ring effect regularly occurs during the evaporation of colloidal droplets and is often undesirable. Here we show that adding a specific concentration of a surfactant can mitigate this effect. We have conducted experiments on aqueous suspensions of carbon nanotubes that were prepared with cationic surfactant dodecyltrimethylammonium bromide added at 0.2, 0.5, 1, 2, 5, and 10 times the critical micelle concentration. Colloidal droplets were deposited on candidate substrates for printed electronics with varying wetting characteristics: glass, polyethylene terephthalate, fluoroethylene propylene copolymer, and polydimethylsiloxane. Following drying, four pattern types were observed in the final deposits: dot-like, uniform, coffee ring deposits, and combined patterns (coffee ring with a dot-like central deposit). Evaporation occurred predominantly in constant contact radius mode for most pattern types, except for some cases that led to uniform deposits in which early stage receding of the contact line occurred. Image analysis and profilometry yielded deposit thicknesses, allowing us to identify a coffee ring subfeature in all uniform deposits and to infer the percentage coverage in all cases. Importantly, a critical surfactant concentration was identified for the generation of highly uniform deposits across all substrates. This concentration resulted in visually uniform deposits consisting of a coffee ring subfeature with a densely packed center, generated from two distinct evaporative phases.
Collapse
Affiliation(s)
- N. S. Howard
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
| | - A. J. Archer
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. N. Sibley
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. J. Southee
- School
of Design and Creative Arts, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - K. G. U. Wijayantha
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
- Centre
for Renewable and Low Carbon Energy, Cranfield
University, Cranfield, Bedfordshire MK43 0AL, U.K.
| |
Collapse
|
5
|
Zavarzin SV, Kolesnikov AL, Budkov YA, Barash LY. Influence of fluid flows on electric double layers in evaporating colloidal sessile droplets. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:24. [PMID: 35288808 DOI: 10.1140/epje/s10189-022-00178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
A model is developed for describing the transport of charged colloidal particles in an evaporating sessile droplet on the electrified metal substrate in the presence of a solvent flow. The model takes into account the electric charge of colloidal particles and small ions produced by electrolytic dissociation of the active groups on the colloidal particles and solvent molecules. We employ a system of self-consistent Poisson and Nernst-Planck equations for electric potential and average concentrations of colloidal particles and ions with the appropriate boundary conditions. The fluid dynamics, temperature distribution and evaporation process are described with the Navier-Stokes equations, equations of heat conduction and vapor diffusion in air, respectively. The developed model is used to carry out a first-principles numerical simulation of charged silica colloidal particle transport in an evaporating aqueous droplet. We find that electric double layers can be destroyed by a sufficiently strong fluid flow.
Collapse
Affiliation(s)
- Semen V Zavarzin
- School of Applied Mathematics, HSE University, Moscow, Russia, 101000
| | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, Leipzig, 04318, Germany
| | - Yury A Budkov
- School of Applied Mathematics, HSE University, Moscow, Russia, 101000
- Landau Institute for Theoretical Physics, Chernogolovka, Russia, 142432
| | - Lev Yu Barash
- Landau Institute for Theoretical Physics, Chernogolovka, Russia, 142432.
| |
Collapse
|
6
|
Kolegov K, Barash L. Applying droplets and films in evaporative lithography. Adv Colloid Interface Sci 2020; 285:102271. [PMID: 33010576 DOI: 10.1016/j.cis.2020.102271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023]
Abstract
This review covers experimental results of evaporative lithography and analyzes existing mathematical models of this method. Evaporating droplets and films are used in different fields, such as cooling of heated surfaces of electronic devices, diagnostics in health care, creation of transparent conductive coatings on flexible substrates, and surface patterning. A method called evaporative lithography emerged after the connection between the coffee ring effect taking place in drying colloidal droplets and naturally occurring inhomogeneous vapor flux densities from liquid-vapor interfaces was established. Essential control of the colloidal particle deposit patterns is achieved in this method by producing ambient conditions that induce a nonuniform evaporation profile from the colloidal liquid surface. Evaporative lithography is part of a wider field known as "evaporative-induced self-assembly" (EISA). EISA involves methods based on contact line processes, methods employing particle interaction effects, and evaporative lithography. As a rule, evaporative lithography is a flexible and single-stage process with such advantages as simplicity, low price, and the possibility of application to almost any substrate without pretreatment. Since there is no mechanical impact on the template in evaporative lithography, the template integrity is preserved in the process. The method is also useful for creating materials with localized functions, such as slipperiness and self-healing. For these reasons, evaporative lithography attracts increasing attention and has a number of noticeable achievements at present. We also analyze limitations of the approach and ways of its further development.
Collapse
|
7
|
Bridonneau N, Zhao M, Battaglini N, Mattana G, Thévenet V, Noël V, Roché M, Zrig S, Carn F. Self-Assembly of Nanoparticles from Evaporating Sessile Droplets: Fresh Look into the Role of Particle/Substrate Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11411-11421. [PMID: 32911931 DOI: 10.1021/acs.langmuir.0c01546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We studied the dependence of solid deposit shape obtained by free drying of sessile drops on particle concentration and Derjaguin-Landau-Verwey-Overbeek (DLVO) particle/substrate interaction. In contrast to previous contributions using pH as a control parameter of interactions, we investigated an unprecedentedly wide range of concentrations and particle/substrate DLVO forces by modifying the nature of the substrate and particles as well as their size and surface chemistry, whereas long-distance repulsive interactions between particles were maintained for most of the drying time. Our main result is that the different shapes of deposits obtained by modifying the particle concentration are the same in the different regimes of concentration regardless of particle/substrate interaction in the studied range of DLVO forces and particle concentrations. The second result is that, contrary to expectations, the dominant morphology of dry patterns at low particle concentration always shows a dotlike pattern for all the studied systems.
Collapse
Affiliation(s)
- N Bridonneau
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR, 7057 Paris, France
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - M Zhao
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR, 7057 Paris, France
| | - N Battaglini
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - G Mattana
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - V Thévenet
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR, 7057 Paris, France
| | - V Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - M Roché
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR, 7057 Paris, France
| | - S Zrig
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - F Carn
- Université de Paris, Laboratoire Matière et Systèmes Complexes, CNRS, UMR, 7057 Paris, France
| |
Collapse
|