1
|
Yeh IH, Ghobadifard M, Feng L, Galievsky V, Radovanovic PV. Origin of Dopant-Carrier Exchange Coupling and Excitonic Zeeman Splitting in Mn 2+-Doped Lead Halide Perovskite Nanocrystals. NANO LETTERS 2024; 24:10554-10561. [PMID: 39151058 DOI: 10.1021/acs.nanolett.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Low-dimensional metal halide perovskites have unique optical and electrical properties that render them attractive for the design of diluted magnetic semiconductors. However, the nature of dopant-exciton exchange interactions that result in spin-polarization of host-lattice charge carriers as a basis for spintronics remains unexplored. Here, we investigate Mn2+-doped CsPbCl3 nanocrystals using magnetic circular dichroism spectroscopy and show that Mn2+ dopants induce excitonic Zeeman splitting which is strongly dependent on the nature of the band-edge structure. We demonstrate that the largest splitting corresponds to exchange interactions involving the excited state at the M-point along the spin-orbit split-off conduction band edge. This splitting gives rise to an absorption-like C-term excitonic MCD signal, with the estimated effective g-factor (geff) of ca. 70. The results of this work help resolve the assignment of absorption transitions observed for metal halide perovskite nanocrystals and allow for a design of new diluted magnetic semiconductor materials for spintronics applications.
Collapse
Affiliation(s)
- I-Hsuan Yeh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahdieh Ghobadifard
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lin Feng
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Victor Galievsky
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Zhang J, Wang J, Cai L, Wang S, Wu K, Sun B, Zheng W, Kershaw SV, Jia G, Zhang X, Rogach AL, Yang X. Fine-Tuning Crystal Structures of Lead Bromide Perovskite Nanocrystals through Trace Cadmium(II) Doping for Efficient Color-Saturated Green LEDs. Angew Chem Int Ed Engl 2024; 63:e202403996. [PMID: 38679568 DOI: 10.1002/anie.202403996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n-doped emitters convert into only slightly n-doped ones; this boosts the charge injection efficiency of the corresponding light-emitting diodes. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Cai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Guohua Jia
- School of Molecular and Life Science, Curtin University, Bentley, WA 6102, Australia
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
3
|
Ghosh J, O’Neill J, Masteghin MG, Braddock I, Crean C, Dorey R, Salway H, Anaya M, Reiss J, Wolfe D, Sellin P. Surfactant-Dependent Bulk Scale Mechanochemical Synthesis of CsPbBr 3 Nanocrystals for Plastic Scintillator-Based X-ray Imaging. ACS APPLIED NANO MATERIALS 2023; 6:14980-14990. [PMID: 37649835 PMCID: PMC10463220 DOI: 10.1021/acsanm.3c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
We report a facile, solvent-free surfactant-dependent mechanochemical synthesis of highly luminescent CsPbBr3 nanocrystals (NCs) and study their scintillation properties. A small amount of surfactant oleylamine (OAM) plays an important role in the two-step ball milling method to control the size and emission properties of the NCs. The solid-state synthesized perovskite NCs exhibit a high photoluminescence quantum yield (PLQY) of up to 88% with excellent stability. CsPbBr3 NCs capped with different amounts of surfactant were dispersed in toluene and mixed with polymethyl methacrylate (PMMA) polymer and cast into scintillator discs. With increasing concentration of OAM during synthesis, the PL yield of CsPbBr3/PMMA nanocomposite was increased, which is attributed to reduced NC aggregation and PL quenching. We also varied the perovskite loading concentration in the nanocomposite and studied the resulting emission properties. The most intense PL emission was observed from the 2% perovskite-loaded disc, while the 10% loaded disc exhibited the highest radioluminescence (RL) emission from 50 kV X-rays. The strong RL yield may be attributed to the deep penetration of X-rays into the composite, combined with the large interaction cross-section of the X-rays with the high-Z atoms within the NCs. The nanocomposite disc shows an intense RL emission peak centered at 536 nm and a fast RL decay time of 29.4 ns. Further, we have demonstrated the X-ray imaging performance of a 10% CsPbBr3 NC-loaded nanocomposite disc.
Collapse
Affiliation(s)
- Joydip Ghosh
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Joseph O’Neill
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Mateus G. Masteghin
- Advanced
Technology Institute, University of Surrey, Guildford GU2 7XH, U.K.
| | - Isabel Braddock
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| | - Carol Crean
- Department
of Chemistry, University of Surrey, Guildford GU2 7XH, U.K.
| | - Robert Dorey
- School
of Mechanical Engineering Sciences, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Hayden Salway
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Miguel Anaya
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
- Departamento
Física de la Materia Condensada, Instituto de Ciencia
de Materiales de Sevilla, Universidad de
Sevilla−CSIC, Avenida Reina Mercedes SN, Sevilla 41012, Spain
| | - Justin Reiss
- Applied
Research
Laboratory, Materials Science and Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Douglas Wolfe
- Applied
Research
Laboratory, Materials Science and Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Paul Sellin
- Department
of Physics, University of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
4
|
Wang L, Mao H, Li J, Li Y, Li M, Zhu J, Fan B, Liu W, Shao G, Xu H, Wang H, Zhang R, Lu H. Heavy Mn-doped CsPbBr 3nanocrystals synthesized by high energy ball milling with high stability. NANOTECHNOLOGY 2022; 33:455703. [PMID: 35850036 DOI: 10.1088/1361-6528/ac81d6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
CsPbX3(X = Cl, Br, I) semiconductor nanocrystals (NCs) have excellent optical and photoelectric properties, and are potential core materials for various photoelectric devices. However, the toxicity of Pb and instability have been the key limitations to application of NCs. Herein, using MnBr2and MnBr2·4H2O as manganese sources, heavy Mn-doped CsPbBr3(Mn:CsPbBr3) NCs are synthesized by high-energy ball grinding, which avoids high temperature, a large number of polar solvents and atmosphere protection required in traditional liquid phase methods. However, when MnBr2·4H2O is used as the raw material, infinite solid solution doping can be achieved, and the synthesized Mn:CsPbBr3NCs show smaller particle size, stronger PL intensity and stability. The reason is that presence of crystal water plays a similar role to wet milling in the ball milling process, and can promote the passivation effect of oleylamine (OAm) on nanocrystal defects and the connection between them. In addition, a simple, easy-operating and beneficial to commercial production method for the preparation of Mn:CsPbBr3NCs/EVA flexible films is proposed, which can effectively improve the stability of Mn:CsPbBr3NCs. This study is expected to provide an effective way for the synthesis and stability improvement of CsPbX3NCs doped with different ions.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hengbin Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Junhui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yi Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jinpeng Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wen Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Gang Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hongliang Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Hongxia Lu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Urchin like inverse spinel manganese doped NiCo2O4 microspheres as high performances anode for lithium-ion batteries. J Colloid Interface Sci 2022; 616:509-519. [DOI: 10.1016/j.jcis.2022.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
6
|
Jiang MC, Pan CY. Research on the stability of luminescence of CsPbBr 3 and Mn:CsPbBr 3 PQDs in polar solution. RSC Adv 2022; 12:15420-15426. [PMID: 35693234 PMCID: PMC9121214 DOI: 10.1039/d2ra02165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Mn:CsPbBr3 PQDs are achieved by hot injection method. As the amount of Mn doping is gradually increased, the photoluminescence (PL) spectra shows a slight blue shift. Mn-doped PQDs exhibit higher quantum efficiency of 83.9% and longer lifetimes of 267 ns. The stability test was performed to assess the susceptibility of the PQDs to polar solutions. It was figured out that although the stabilities of CsPbBr3 PQDs and Mn-doped PQDs decreased as the polarity of solution increased, Mn-doped PQDs still maintained higher PL intensity than undoped PQD. Notably, 73% PL intensity of Mn:PQDs was maintained which is nearly three times as much as undoped PQDs in water. We found polarity would induce drastic degradation of CsPbBr3 QDs. The steady-state spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) verified that CsPbBr3 QDs tend to aggregate to form larger particles under continuous light soaking. Our work reveals the main origin of instability in CsPbBr3 QDs and provides reference to engineering such QDs towards optimal device application. Mn-doped PQDs exhibit higher quantum efficiency of 83.9%. The stabilities of CsPbBr3 PQDs and Mn-doped PQDs decreased as the polarity of solution increased, but Mn-doped PQDs still maintained higher PL intensity than undoped PQDs.![]()
Collapse
Affiliation(s)
- Mou-Ce Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology Guangzhou Guangdong 510006 China +86-020-39322231
| | - Chun-Yang Pan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology Guangzhou Guangdong 510006 China +86-020-39322231
| |
Collapse
|
7
|
Ghosh J, Sellin PJ, Giri PK. Recent advances in lead-free double perovskites for x-ray and photodetection. NANOTECHNOLOGY 2022; 33:312001. [PMID: 35443239 DOI: 10.1088/1361-6528/ac6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, lead halide perovskites have attracted significant research attention in the field of photovoltaics, light-emitting devices, photodetection, ionizing radiation detection, etc, owing to their outstanding optoelectrical properties. However, the commercial applications of lead-based perovskite devices are restricted due to the poor ambient stability and toxicity of lead. The encapsulation of lead-based devices can reduce the possible leakage of lead. However, it is hard to ensure safety during large-scale production and long-term storage. Recently, considerable efforts have been made to design lead-free perovskites for different optoelectronic applications. Metal halide double perovskites with the general formula of A2MIMIIIX6or A2MIVX6could be potentially considered as green and stable alternatives for different optoelectronic applications. In this review article, we focus on the recent progress and findings on lead-free halide double perovskites for x-ray and UV-vis photodetection applications. Lead-free halide double perovskite has recently drawn a great deal of attention for superior x-ray detection due to its high absorption coefficient, large carrier mobility-lifetime product, and large bulk resistance. In addition, these materials exhibit good performance in photodetection in the UV-vis region due to high photocarrier generation and efficient carrier separation. In this review, first, we define the characteristics of lead-free double perovskite materials. The fundamental characteristics and beneficial properties of halide perovskites for direct and indirect x-ray detection are then discussed. We comprehensively review recent developments and efforts on lead-free double perovskite for x-ray detection and UV-vis photodetection. We bring out the current challenges and opportunities in the field and finally present the future outlook for developing lead-free double perovskite-based x-ray and UV-vis photodetectors for practical applications.
Collapse
Affiliation(s)
- Joydip Ghosh
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P J Sellin
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
8
|
Effect of Carrier Gas Flow Rate on the Morphology and Luminescence Properties of CsPbBr3 Microcrystals. CRYSTALS 2022. [DOI: 10.3390/cryst12040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All-inorganic halide perovskites, especially lead perovskite microcrystals, have attracted more and more attention because of their excellent photoelectric properties and chemical stability. Herein, high quality CsPbBr3 microcrystals with three different stable morphologies, namely microplate, frustum of a square pyramid and pyramid, were synthesized by the chemical vapor deposition (CVD) method through altering the flow rate of a carrier gas and were comparatively studied in structure and optical property. The photoluminescence (PL) results showed that the CsPbBr3 microplate has the best luminescence property. The structural characterization results by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), X-ray rocking curves (XRC) and Raman revealed that the flow rate of the carrier gas could manipulate the morphology evolution of CsPbBr3 microcrystals and further impact their luminescence properties.
Collapse
|
9
|
Chen W, Shao H, Wu X, Li L, Zhu J, Dong B, Xu L, Xu W, Zhou D, Hu J, Bai X, Song H. Highly Stable and Efficient Mn 2+ Doping Zero-Dimension Cs 2Zn xPb 1-xCl 4 Alloyed Nanorods toward White Electroluminescent Light-Emitting Diodes. J Phys Chem Lett 2022; 13:2379-2387. [PMID: 35254835 DOI: 10.1021/acs.jpclett.2c00381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zero-dimensional (0D) crystal structure perovskite NCs have reemerged as promising materials owing to their superior long-term stability; however, their poor conductivity leads to the inferior electrical performances and critically restricts the optoelectronic application of 0D perovskite materials. Herien, the alloyed 0D crystal structure Cs2ZnxPb1-xCl4 nanorods (NRs) have been synthesized by the modified hot-injection method, which emits bright blue-violet light at 408 nm, and the optimized photoluminescence quantum yield (PLQY) reaches 26%. The Cs2Zn0.88Pb0.12Cl4 NRs display more excellent air stability and an order of magnitude higher conductivity than CsPbCl3 nanocube films. In addition, we dope Mn2+ ions into the Cs2Zn0.88Pb0.12Cl4 NRs, which accomplished the optimized PLQY of 40.3% and polarized emission with r = 0.19. The light-emitting diodes (LEDs) based on Mn2+ ion doped Cs2Zn0.88Pb0.12Cl4 NRs exhibit a chromaticity coordinate (CIE) of (0.36, 0.33), an EQE of 0.3%, and a maximum luminance of 98 cd m-2. This work has enriched ideas for the production of white light perovskite LEDs.
Collapse
Affiliation(s)
- Wenda Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - He Shao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiufeng Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lifang Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jinyang Zhu
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lin Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wen Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
10
|
Hu K, Hu Y, Li T, Qiao F, Chen Y, Han J, Lee L, Ali G, Xie Y. Hexamethyldisilazane-Assisted Ambient Condition Mn2+ Doping Perovskite Nanocrystals. CrystEngComm 2022. [DOI: 10.1039/d1ce01548f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doping Mn2+ ions into lead halide perovskite (LHP) nanocrystals (NCs) has attracted great attention in the optoelectronic fields due to the stability enhancement and unique dual-color emission characteristics arising from...
Collapse
|
11
|
Hossain MT, Das M, Ghosh J, Ghosh S, Giri PK. Understanding the interfacial charge transfer in the CVD grown Bi 2O 2Se/CsPbBr 3 nanocrystal heterostructure and its exploitation in superior photodetection: experiment vs. theory. NANOSCALE 2021; 13:14945-14959. [PMID: 34533165 DOI: 10.1039/d1nr04470b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient charge transfer in a 2D semiconductor heterostructure plays a crucial role in high-performance photodetectors and energy harvesting devices. Non-van der Waals 2D Bi2O2Se has enormous potential for high-performance optoelectronics, though very little is known about the interfacial charge transport at the corresponding 2D heterojunction. Herein, we report a combined experimental and theoretical investigation of interfacial charge transfer in the Bi2O2Se/CsPbBr3 heterostructure through various microscopic and spectroscopic tools corroborated with density functional theory calculations. The CVD-grown few-layer Bi2O2Se nanosheet possesses high crystallinity and a high absorption coefficient in the visible-near IR region. We integrated the few-layer Bi2O2Se nanosheet possessing superior electron mobility and CsPbBr3 nanocrystals with high light-harvesting capability for efficient broadband photodetection. The band alignment reveals a type-I heterojunction, and the device under reverse bias reveals a fast response time of 12 μs/24 μs (rise time/fall time) and an improved responsivity in the 390 to 840 nm range due to the effective interfacial charge transfer and efficient interlayer coupling at the Bi2O2Se/CsPbBr3 interface. Notably, a photodetector with a better light on/off ratio and a peak responsivity of ∼103 A W-1 was achieved in the Bi2O2Se/CsPbBr3 heterostructure due to the synergistic effects in the heterostructure under ambient conditions. The DFT analysis of the density of states and charge density plots in the heterostructure revealed a net transfer of electrons/holes from perovskite nanocrystals to Bi2O2Se layers and additional density of states in Bi2O2Se. These results are significant for the development of non-van der Waals heterostructure based high-performance low-powered photodetectors.
Collapse
Affiliation(s)
- Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
| | - Mandira Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
| | - Joydip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
| | - Subhradip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, India
| |
Collapse
|
12
|
Ji S, Yuan X, Zheng J, Cao S, Ji W, Li H, Zhao J, Zhang H. Near-unity blue-orange dual-emitting Mn-doped perovskite nanocrystals with metal alloying for efficient white light-emitting diodes. J Colloid Interface Sci 2021; 603:864-873. [PMID: 34242990 DOI: 10.1016/j.jcis.2021.06.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
The tunable dual-color emitting Mn2+ doped CsPbCl3-xBrx nanocrystals (NCs) with near-unity photoluminescence quantum yield (PL QY) were synthesized through post-treatment of metal bromide at room temperature for fabrication of efficient warm white light-emitting diodes (WLEDs). Especially, the CdBr2 treated blue-orange emitting Mn doped NCs with various Mn/Pb molar feed ratios exhibit higher PL QY of 97% and longer Mn2+ PL lifetime of 0.9 ms. It is surprisingly found that the X-ray diffraction peak at 31.9° is almost not changed with increasing Br composition, meaning formation of metal alloying due to incorporation of amount of divalent cation in NCs. The strong and stable Mn2+ PL at temperature ranging from 80 K to 360 K are revealed and the temperature-dependent energy transfer efficiencies in Mn2+ doped CsPbCl1.5Br1.5 NCs are obtained. The enhancement mechanism of Mn2+ PL QY was attributed to improved energy transfer from exciton to Mn2+ d-d transition and suppressed defect state density after post-treatment. The efficient warm WLEDs with color rendering index of 90 and luminous efficacy of 92 lm/W at 10 mA were fabricated by combining blue-orange dual-emitting Mn2+ doped CsPbCl3-xBrx@SiO2 and green emissive CsPbBr3@SiO2 NCs with violet GaN chips.
Collapse
Affiliation(s)
- Sihang Ji
- College of Physics, Jilin University, Changchun 130023, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
| | - Xi Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jinju Zheng
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
| | - Wenyu Ji
- College of Physics, Jilin University, Changchun 130023, China
| | - Haibo Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China.
| | - Hanzhuang Zhang
- College of Physics, Jilin University, Changchun 130023, China.
| |
Collapse
|
13
|
Liu M, Ali-Löytty H, Hiltunen A, Sarlin E, Qudsia S, Smått JH, Valden M, Vivo P. Manganese Doping Promotes the Synthesis of Bismuth-based Perovskite Nanocrystals While Tuning Their Band Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100101. [PMID: 33792184 DOI: 10.1002/smll.202100101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn2+ ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs3 Bi2 I9 NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs3 BiI6 product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.
Collapse
Affiliation(s)
- Maning Liu
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| | - Harri Ali-Löytty
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, FI-33014, Finland
| | - Arto Hiltunen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| | - Essi Sarlin
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 589, Tampere, FI-33014, Finland
| | - Syeda Qudsia
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Porthansgatan 3-5, Turku, FI-20500, Finland
| | - Jan-Henrik Smått
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Porthansgatan 3-5, Turku, FI-20500, Finland
| | - Mika Valden
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, FI-33014, Finland
| | - Paola Vivo
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland
| |
Collapse
|
14
|
Lu CH, Biesold-McGee GV, Liu Y, Kang Z, Lin Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem Soc Rev 2020; 49:4953-5007. [PMID: 32538382 DOI: 10.1039/c9cs00790c] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX3, where A is a monovalent cation (which can be either organic (e.g., CH3NH3+ (MA), CH(NH2)2+ (FA)) or inorganic (e.g., Cs+)), B is a divalent metal cation (usually Pb2+), and X is a halogen anion (Cl-, Br-, I-). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties (e.g., absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A', B', or X' site ions into the A, B, or X sites of ABX3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.
Collapse
Affiliation(s)
- Cheng-Hsin Lu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill V Biesold-McGee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, P. R. China.
| | - Zhitao Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. and Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|