1
|
Tang LQ, Zhang K, Zeng HY, Yan W, Yue HL, Wang MX. Amorphous/polycrystalline NiMn selenide for high-performance supercapacitors. J Chem Phys 2024; 161:084704. [PMID: 39171713 DOI: 10.1063/5.0222583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Transition-metal selenides have been extensively studied as promising electrode materials for supercapacitors. Engineering amorphous/crystalline heterostructures is an effective strategy to improve rich active sites for accelerating redox reaction kinetics but still lacks exploration. In this study, an amorphous/crystalline heterostructure was designed and constructed by selenizing the self-sacrificial template NiMnS to generate amorphous Mn/polycrystalline Ni0.85Se-NiSe2 heterophase via the phase transformation from metal sulfide into metal selenide. The synergy of the complementary multi-components and amorphous/polycrystalline heterophase could enrich electron/ion-transport channels and expose abundant active sites, which accelerated electron/ion transfer and Faradaic reaction kinetics during charging/discharging. As expected, the optimal NiMnSe exhibited a high specific charge (1389.1 C g-1 at 1 A g-1), a good rate capability, and an excellent lifespan (88.9% retention). Moreover, the fabricated NiMnSe//activated carbon device achieved a long cycle life and energy density of 48.0 W h kg-1 at 800 W kg-1, shedding light on the potential for use in practical applications, such as electrochemical energy-storage devices.
Collapse
Affiliation(s)
- Lun-Qiang Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Kai Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Wei Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Li Yue
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Ming-Xin Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
2
|
Hussain I, Kewate OJ, Hanan A, Bibi F, Javed MS, Rosaiah P, Ahmad M, Chen X, Shaheen I, Hanif MB, Bhatti AH, Assiri MA, Zoubi WA, Zhang K. V-MXenes for Energy Storage/Conversion Applications. CHEMSUSCHEM 2024; 17:e202400283. [PMID: 38470130 DOI: 10.1002/cssc.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Onkar Jaywant Kewate
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Ali Hassan Bhatti
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, South Korea
| | - Mohammed Ali Assiri
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| |
Collapse
|
3
|
Cheng H, Li J, Meng T, Shu D. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308804. [PMID: 38073335 DOI: 10.1002/smll.202308804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Indexed: 05/18/2024]
Abstract
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Jianping Li
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Tao Meng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Ran F, Hu M, Deng S, Wang K, Sun W, Peng H, Liu J. Designing transition metal-based porous architectures for supercapacitor electrodes: a review. RSC Adv 2024; 14:11482-11512. [PMID: 38595725 PMCID: PMC11002841 DOI: 10.1039/d4ra01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Over the past decade, transition metal (TM)-based electrodes have shown intriguing physicochemical properties and widespread applications, especially in the field of supercapacitor energy storage owing to their diverse configurations, composition, porosity, and redox reactions. As one of the most intriguing research interests, the design of porous architectures in TM-based electrode materials has been demonstrated to facilitate ion/electron transport, modulate their electronic structure, diminish strain relaxation, and realize synergistic effects of multi-metals. Herein, the recent advances in porous TM-based electrodes are summarized, focusing on their typical synthesis strategies, including template-mediated assembly, thermal decomposition strategy, chemical deposition strategy, and host-guest hybridization strategy. Simultaneously, the corresponding conversion mechanism of each synthesis strategy are reviewed, and the merits and demerits of each strategy in building porous architectures are also discussed. Subsequently, TM-based electrode materials are categorized into TM oxides, TM hydroxides, TM sulfides, TM phosphides, TM carbides, and other TM species with a detailed review of their crystalline phase, electronic structure, and microstructure evolution to tune their electrochemical energy storage capacity. Finally, the challenges and prospects of porous TM-based electrode materials are presented to guide the future development in this field.
Collapse
Affiliation(s)
- Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Meijie Hu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Shulin Deng
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Hui Peng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
5
|
Long Y, Li Q, Zhang Z, Zeng Q, Liu D, Zhao L, Liu Y, Li Y, Zhang Y, Ji K, Zhou Z, Han X, Wang J. Coupling MoSe 2 with Non-Stoichiometry Ni 0.85 Se in Carbon Hollow Nanoflowers for Efficient Electrocatalytic Synergistic Effect on Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304882. [PMID: 37890468 DOI: 10.1002/smll.202304882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Li-O2 batteries could deliver ultra-high theoretical energy density compared to current Li-ion batteries counterpart. The slow cathode reaction kinetics in Li-O2 batteries, however, limits their electrocatalytic performance. To this end, MoSe2 and Ni0.85 Se nanoflakes were decorated in carbon hollow nanoflowers, which were served as the cathode catalysts for Li-O2 batteries. The hexagonal Ni0.85 Se and MoSe2 show good structural compatibility with the same space group, resulting in a stable heterogeneous structure. The synergistic interaction of the unsaturated atoms and the built-in electric fields on the heterogeneous structure exposes abundant catalytically active sites, accelerating ion and charge transport and imparting superior electrochemical activity, including high specific capacities and stable cycling performance. More importantly, the lattice distances of the Ni0.85 Se (101) plane and MoSe2 (100) plane at the heterogeneous interfaces are highly matched to that of Li2 O2 (100) plane, facilitating epitaxial growth of Li2 O2 , as well as the formation and decomposition of discharge products during the cycles. This strategy of employing nonstoichiometric compounds to build heterojunctions and improve Li-O2 battery performance is expected to be applied to other energy storage or conversion systems.
Collapse
Affiliation(s)
- Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qiang Li
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Zidong Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Qingxi Zeng
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Dong Liu
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250061, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
- Shandong Tianhou New Material Technology Co. Ltd., Heze, 274051, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518063, China
| |
Collapse
|
6
|
Zhang C, Wang S, Xiao J. Coaxial nickel cobalt selenide/nitrogen-doped carbon nanotube array as a three-dimensional self-supported electrode for electrochemical energy storage. RSC Adv 2024; 14:7710-7719. [PMID: 38444967 PMCID: PMC10912943 DOI: 10.1039/d3ra08635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Herein, we propose a one-step urea pyrolysis method for preparing a nitrogen-doped carbon nanotube array grown on carbon fiber paper, which is demonstrated as a three-dimensional scaffold for constructing a nickel cobalt selenide-based coaxial array structure. Thanks to the large surface area, interconnected porous structure, high mass loading, as well as fast electron/ion transport pathway of the coaxial array structure, the nickel cobalt selenide/nitrogen-doped carbon nanotube electrode exhibits over 7 times higher areal capacity than that directly grown on carbon fiber paper, and better rate capability. The cell assembled by a nickel cobalt selenide/nitrogen-doped carbon nanotube positive electrode and an iron oxyhydroxide/nitrogen-doped carbon nanotube negative electrode delivers a volumetric capacity of up to 22.5 C cm-3 (6.2 mA h cm-3) at 4 mA cm-2 and retains around 86% of the initial capacity even after 10 000 cycles at 10 mA cm-2. A volumetric energy density of up to 4.9 mW h cm-3 and a maximum power density of 208.1 mW cm-3 are achieved, and is comparable to, if not better than, those of similar energy storage devices reported previously.
Collapse
Affiliation(s)
- Chen Zhang
- College of Petroleum Equipment and Electrical Engineering, Dongying Vocational Institute Dongying P. R. China
| | - Shang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Junwu Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
7
|
Srivastav S, Singh S, Meher SK. Hierarchical Mn 3O 4/NiSe 2-MnSe 2: A Versatile Electrode Material for High-Performance All-Solid-State Hybrid Pseudocapacitors with Supreme Working Durability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:362-379. [PMID: 38109493 DOI: 10.1021/acs.langmuir.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
As highly efficient electrochemical energy storage devices are in indispensable demand for numerous modern-day technologies, herein sluggish precipitation followed by an anion exchange procedure has been developed to synthesize an oxide-selenide mixed phase (Mn3O4/NiSe2-MnSe2) novel electrode material with high surface area and porosity for high-performance all-solid-state hybrid pseudocapacitors (ASSHPC). Mn3O4/NiSe2-MnSe2 shows a rich Tyndall effect (in H2O) and possesses randomly arranged low-dimensional crystallites of nearly similar size and uniform shape. The electrochemical analyses of Mn3O4/NiSe2-MnSe2 corroborate good electrochemical reversibility during charge transfer, superior pseudocapacitive charge-storage efficiency, and very low charge transfer and series resistance, ion-diffusion resistance, and relaxation time, which endorse the quick pseudocapacitive response of the material. The Mn3O4/NiSe2-MnSe2||N-rGO ASSHPC device demonstrates excellent charge-storage physiognomies suggestive of rich electrochemical and electromicrostructural compatibility between the electrode materials in the fabricated assembly. The Mn3O4/NiSe2-MnSe2||N-rGO ASSHPC device delivers high mass and area specific capacitance/capacity, very low charge-transfer resistance (∼0.74 Ω), total series resistance (∼0.76 Ω), diffusion resistance, and a relaxation time constant, which endorse the quick pseudocapacitive response of the device. The device delivers higher energy and power density (∼34 W h kg-1 at ∼2994 W kg-1), rate efficiency (∼17 W h kg-1 at ∼11,995 W kg-1), and cyclic performance (∼97.2% specific capacity/capacitance retention after 9500 continuous GCD cycles). The superior Ragone and cyclic efficiencies of the ASSHPC device are ascribed to the multiple redox-active Ni and Mn ions which lead to the supplemented number of redox reactions; "electroactive-ion buffering pool"-like physiognomics of Mn3O4/NiSe2-MnSe2, which facilitate the electrolyte ion dissemination to the electroactive sites even at high rate redox condition; and ideal electro-microstructural compatibility between the electrode materials, which leads to assisted charge transfer and absolute ion dissemination during the charge-storage process.
Collapse
Affiliation(s)
- Siddhant Srivastav
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Shilpa Singh
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Sumanta Kumar Meher
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| |
Collapse
|
8
|
Ramulu B, Arbaz SJ, Nagaraju M, Yu JS. Multifunctional metal selenide-based materials synthesized via a one-pot solvothermal approach for electrochemical energy storage and conversion applications. NANOSCALE 2023; 15:13049-13061. [PMID: 37493392 DOI: 10.1039/d3nr02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 μA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.
Collapse
Affiliation(s)
- Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
9
|
Mohan H, Ha GH, Kim G, Lee HR, Lee H, Kim K, Shin T. Cobalt-molybdenum-selenide nanoflowers for bifunctional visible light photocatalysis. CHEMOSPHERE 2023; 326:138436. [PMID: 36933842 DOI: 10.1016/j.chemosphere.2023.138436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The renewability and zero carbon emissions of hydrogen make it a promising clean energy resource to meet future energy demands. Owing to its benefits, photocatalytic water-splitting has been extensively investigated for hydrogen production. However, the low efficiency poses a serious challenge to its implementation. Herein, we attempted to synthesize bimetallic transition metal selenides, namely Co/Mo/Se (CMS) photocatalysts, with varying atomic compositions (CMSa, CMSb, and CMSc) and investigated their photocatalytic water splitting efficiencies. The observed hydrogen evolution rates were as follows: 134.88 μmol g-1 min-1 for CoSe2, 145.11 μmol g-1 min-1 for MoSe2, 167.31 μmol g-1 min-1 for CMSa, 195.11 μmol g-1 min-1 for CMSb, and 203.68 μmol g-1 min-1 for CMSc. Hence, we deemed CMSc to be the most potent photocatalytic alternative among the compounds. CMSc was also tested for its efficiency towards degradation of triclosan (TCN), and results substantiated that CMSc succeeded degrading 98% TCN while CMSa and b were able to degrade 80 and 90% TCN respectively-the attained efficiency being exponentially higher than CoSe2 and MoSe2 taken for comparative analysis in addition to complete degradation of the pollutants leaving no harmful intermediaries during the process. Thus, CMSc shall be identified as a highly potential photocatalyst with respect to both environmental and energy applications.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ga Hyeon Ha
- Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hye Rin Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hakju Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyoungsoo Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Wolff N, Braniste T, Krüger H, Mangelsen S, Islam MR, Schürmann U, Saure LM, Schütt F, Hansen S, Terraschke H, Adelung R, Tiginyanu I, Kienle L. Synthesis and Nanostructure Investigation of Hybrid β-Ga 2 O 3 /ZnGa 2 O 4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207492. [PMID: 36782364 DOI: 10.1002/smll.202207492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Indexed: 05/04/2023]
Abstract
The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid β-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of β-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-β-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.
Collapse
Affiliation(s)
- Niklas Wolff
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
| | - Helge Krüger
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sebastian Mangelsen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Md Redwanul Islam
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ulrich Schürmann
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Fabian Schütt
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sandra Hansen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Huayna Terraschke
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
- Academy of Sciences of Moldova, Stefan cel Mare av. 1, Chisinau, MD-2001, Moldova
| | - Lorenz Kienle
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| |
Collapse
|
11
|
Keshk AA, Elsayed NH, Zareh MM, Alenazi DAK, Said S, Alatawi AO, Albalawi RK, Maher M, Algabry SM, Shoueir K. Kappa-carrageenan for benign preparation of CdSeNPs enhancing the electrochemical measurement of AC symmetric supercapacitor device based on neutral aqueous electrolyte. Int J Biol Macromol 2023; 234:123620. [PMID: 36773863 DOI: 10.1016/j.ijbiomac.2023.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This study presents the development of an electrochemical supercapacitor with a cadmium selenide nanoparticles (CdSeNPs) electrode utilizing a straightforward and economical method based on kappa-carrageenan (κ-CGN). The structural, morphological, and optical characteristics of CdSeNPs were assessed. Activated carbon (AC) and green-prepared CdSeNPs were easily mixed to achieve excellent electrochemical properties. The nanoelectrode (AC@CdSe) was tested in an aqueous electrolyte of sodium sulfate (Na2SO4) with a concentration of 1 Molar. Specific capacitance (Csp) for the AC electrode and the AC@CdSe electrode at 1 A g-1 was calculated to be 103 and 480 F g-1, respectively. Besides, the symmetric supercapacitor AC@CdSe/AC@CdSe device has a high specific energy of 52 Wh kg-1 and a maximum specific power of 2880 W kg-1, with a specific capacitance of 115.5 F g-1. With a coulombic efficiency of between 82 % and 100 %, the device continues to maintain excellent capacitance after 10.000 cycles.
Collapse
Affiliation(s)
- Ali A Keshk
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia.
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia; Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12311, Egypt
| | - Mohsen M Zareh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Duna A K Alenazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - S Said
- Physics Department, Faculty of Science, University of Tabuk, 71421, Saudi Arabia; Physics Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Raghad K Albalawi
- Department of Chemistry, University College Alwajh, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Mahmoud Maher
- Mechatronics Department, Institute of Engineering and Technology, Al-Mahalla-El-Kobra, Egypt
| | - Samar M Algabry
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
12
|
H-CoNiSe 2/NC dodecahedral hollow structures for high-performance supercapacitors. Sci Rep 2023; 13:2070. [PMID: 36746977 PMCID: PMC9902623 DOI: 10.1038/s41598-023-29398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The synergistic effect between metal ions and increasing the surface area leads to the fabrication of supercapacitor materials with high capacities. It is predicted that transition metal selenide compounds will be ideal electrode materials for supercapacitors. However, the defects of poor conductivity and volume expansion of the compounds are fundamental problems that must be solved. In this work, we successfully synthesized the cobalt-nickel selenide nitrogen-doped carbon (H-CoNiSe2/NC) hollow polyhedral composite structure using ZIF-67 as a precursor. The CoSe2 and NiSe2 nanoparticles embedded in the NC polyhedral framework offer a wealth of active sites for the whole electrode. Moreover, the presence of the NC structure in the proposed composite can simultaneously lead to improved conductivity and reduce the volume effect created during the cycling procedure. The H-CoNiSe2/NC electrode provides high specific capacity (1131 C/g at 1.0 A/g) and outstanding cyclic stability (90.2% retention after 6000 cycles). In addition, the H-CoNiSe2/NC//AC hybrid supercapacitor delivers ultrahigh energy density and power density (81.9 Wh/kg at 900 W/kg) and excellent cyclic stability (92.1% of the initial capacitance after 6000 cycles). This study will provide a supercapacitor electrode material with a high specific capacity for energy storage devices.Please confirm the corresponding affiliation for the 'Ali A. Ensafi' author is correctly identified.Error during converting author query response. Please check the eproofing link or feedback pdf for details.
Collapse
|
13
|
Du L, Lv N, Li J, Zhang J, Chen Y, Zhang Y, Li Z, Huang X, Luo J. NiCoSe4@CFF with excellent properties prepared by microwave method for flexible supercapacitors and oxygen evolution reaction. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Gao L, Wang J, Wang W, Woo Joo S, Huang J. NiSe2/CoSe2 nanoparticles anchored on nitrogen-doped carbon nanosheets: toward high performance anode for Na-ion battery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Shirvani M, Hosseiny Davarani SS. Bimetallic CoSe 2/FeSe 2 hollow nanocuboids assembled by nanoparticles as a positive electrode material for a high-performance hybrid supercapacitor. Dalton Trans 2022; 51:13405-13418. [PMID: 35993111 DOI: 10.1039/d2dt02058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and fabrication of impressive and novel electrode materials for energy storage devices, especially supercapacitors, are of great importance. Herein, bimetallic CoSe2/FeSe2 hollow nanocuboid nanostructures derived from Co/Fe-Prussian Blue analogues (denoted as CoSe2/FeSe2 HNCs) are successfully designed and fabricated as a remarkable positive electrode material for high-performance supercapacitors. The bimetallic CoSe2/FeSe2 HNC nanostructures can have increased active sites and short electron-ion diffusion pathways. Bimetallic CoSe2/FeSe2 HNCs@NiF as a positive electrode showed efficient supercapacitive properties with a great specific capacity of 332.75 mA h g-1 (1197.90 C g-1) at 1 A g-1, retaining 80.61% of its initial capacity at 20 A g-1, considerable longevity (91.47% of its initial capacity after 10 000 cycles) and an excellent coulombic efficiency of 98.49%. Also, the designed and fabricated CoSe2/FeSe2 HNCs@NiF||AC@NiF hybrid supercapacitor device using bimetallic CoSe2/FeSe2 HNCs@NiF (positive electrode) and activated carbon@NiF (AC, negative electrode) exhibited an efficient energy density of 63.62 W h kg-1 and a superior durability of 91.14% after 10 000 cycles.
Collapse
Affiliation(s)
- Majid Shirvani
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | |
Collapse
|
16
|
Hong P, Zhang K, He J, Li Y, Wu Z, Xie C, Liu J, Kong L. Selenization governs the intrinsic activity of copper-cobalt complexes for enhanced non-radical Fenton-like oxidation toward organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128958. [PMID: 35472553 DOI: 10.1016/j.jhazmat.2022.128958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Non-radical oxidation pathways in the Fenton-like process have a superior catalytic activity for the selective degradation of organic contaminants under complicated water matrices. Whereas the synthesis of high-performance catalysts and research on reaction mechanisms are unsatisfactory. Herein, it was the first report on copper-cobalt selenide (CuCoSe) that was well-prepared to activate hydrogen peroxide (H2O2) for non-radical species generation. The optimized CuCoSe+H2O2 system achieved excellent removal of chlortetracycline (CTC) in 10 min at neutral pH along with pleasing reusability and stability. Moreover, it exhibited great anti-interference capacity to inorganic anions and natural organic matters even in actual applications. Multi-surveys verified that singlet oxygen (1O2) was the dominant active species in this reaction and electron transfer on the surface-bound of CuCoSe and H2O2 likewise played an important role in direct CTC oxidation. Where the synergetic metals of Cu and Co accounted for the active sites, and the introduced Se atoms accelerated the circulation efficiency of Co3+/Co2+, Cu2+/Cu+ and Cu2+/Co2+. Simultaneously, the produced Se/O vacancies further facilitated electron mediation to enhance non-radical behaviors. With the aid of intermediate identification and theoretical calculation, the degradation pathways of CTC were proposed. And the predicted ecotoxicity indicated a decrease in underlying environmental risk.
Collapse
Affiliation(s)
- Peidong Hong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Kaisheng Zhang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Junyong He
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yulian Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Zijian Wu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chao Xie
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jinhuai Liu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Lingtao Kong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| |
Collapse
|
17
|
Rationally Designed Multifunctional Ti3C2 MXene@Graphene Composite Aerogel Integrated with Bimetallic Selenides for Enhanced Supercapacitor Performance and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Unveiling a MnxCo1−xSe Fenton-like catalyst for organic pollutant degradation: A key role of ternary redox cycle and Se vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor. J Colloid Interface Sci 2022; 616:141-151. [DOI: 10.1016/j.jcis.2022.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
|
20
|
Yang Q, Liu Y, Deng C, Sun L, Shi W. In-situ construction of heterostructure (Ni, Co)Se 2 nanoarrays derived from cone-like ZIF-L for high-performance hybrid supercapacitors. J Colloid Interface Sci 2022; 608:3049-3058. [PMID: 34838320 DOI: 10.1016/j.jcis.2021.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The construction of heterostructure could enhance the electron transfer efficiency and increase the number of active sites, which can further develop high-performance electrode materials of supercapacitors. Herein, (Ni, Co)Se2 nanorod arrays were prepared based on the NiCo-LDH derived from a conical ZIF-L. Significantly, the single nanorod is composed of interconnected NiSe2 and CoSe2 nanoparticles, the heterostructure can expose higher conductivity, more sufficient redox reaction active sites and larger specific surface area. The as-obtained CF@(Ni, Co)Se2 achieved a high specific capacity of 188.8 mAh g-1 at the current density of 1.0 A g-1 and an outstanding cycling stability with a high capacity retention of 90% after 8000 cycles. Finally, an hybrid supercapacitor device composed of activated carbon (AC) as negative electrode and CF@(Ni, Co)Se2 as positive electrode was designed, which revealed an ideal voltage window of 0-1.6 V and exhibited a great energy density of 36.02 Wh kg-1 at the power density of 800 W kg-1, such surpassing energy storage characteristics evidently testify that (Ni, Co)Se2 nanorod arrays can be as the potential electrode material to promote the development of high-performance supercapacitors.
Collapse
Affiliation(s)
- Qingjun Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengyu Deng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
21
|
Zhao Y, Yan Y, Lee JM. Recent progress on transition metal diselenides from formation and modification to applications. NANOSCALE 2022; 14:1075-1095. [PMID: 35019924 DOI: 10.1039/d1nr07789a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of graphene promotes the research of similar two-dimensional (2D) materials, especially 2D transition metal dichalcogenides (TMDCs) with semiconductor properties. Monolayer or few-layer TMDCs have several advantages, such as direct band gap, weak interlayer van der Waals force, large interlayer spacing, and abundant marginal active sites, which make them widely used in catalysis, optoelectronics, as well as energy conversion and storage devices. In addition, transition metal diselenides (TMDSs) also possess many intriguing characteristics. For instance, transition metal diselenides (e.g., MoSe2) have a more stable 1T phase, larger interlayer spacing, smaller band gap, and more obvious metallic property of Se than TMDCs (e.g., MoS2). Thus, it has become one of the most attractive research topics branching out from TMDCs. Herein, this review unveils the structures, synthesis, properties, modifications, applications, and perspectives for TMDSs.
Collapse
Affiliation(s)
- Yuhan Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yibo Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
22
|
Li K, Zheng K, Zhang Z, Li K, Bian Z, Xiao Q, Zhao K, Li H, Cao H, Fang Z, Zhu Y. Three-dimensional graphene encapsulated hollow CoSe 2-SnSe 2nanoboxes for high performance asymmetric supercapacitors. NANOTECHNOLOGY 2022; 33:165602. [PMID: 34986468 DOI: 10.1088/1361-6528/ac487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1at 0.5 A g-1, good rate capability of 212.7 F g-1at 10 A g-1The capacitance retention rate is 80% at 2 A g-1after 5000 cycles due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1at 1 A g-1and an energy density of 11.89 Wh kg-1at 749.9 W kg-1, as well as excellent cycle stability. This work provides a new method for preparing electrode material.
Collapse
Affiliation(s)
- Kainan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Zhifang Zhang
- Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Kuan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ziyao Bian
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Qian Xiao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Kuangjian Zhao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Haijing Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Zebo Fang
- Department of Physics, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| |
Collapse
|
23
|
Yan Z, Zhao J, Gao Q, Lei H. A 2H-MoS 2/carbon cloth composite for high-performance all-solid-state supercapacitors derived from a molybdenum dithiocarbamate complex. Dalton Trans 2021; 50:11954-11964. [PMID: 34378590 DOI: 10.1039/d1dt01643a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular complex Mo2O2(μ-S)2(Et2dtc)2 (dtc = dithiocarbamate) is prepared and loaded onto carbon cloth (CC) through facile solvothermal treatment, followed by subsequent single-source pyrolysis. This results in a highly porous 2H-MoS2/CC composite with a sponge-like stacked lamellar morphology. Due to its high porosity and unique nano/microstructure, the MoS2/CC composite exhibits a specific capacitance of 550.0 F g-1 at 1 A g-1, outperforming some 1T-MoS2 based electrodes. The composite is further assembled into a symmetric all-solid-state supercapacitor, which can be operated stably at a wide potential window and shows a specific capacitance of 127.5 F g-1 at 1 A g-1. In addition, the device delivers a high energy density of 70.8 W h kg-1 at 1 kW kg-1, which still remains 15.0 W h kg-1 at 18.0 kW kg-1. 75% of the performance of the device can be retained after 8000 cycles. Such remarkable electrochemical performance is attributed to its novel nano/microstructures with a large surface area, convenient ion transport pathways, enhanced conductivity, and improved structural stability. Thus, this work demonstrates a highly promising dithiocarbamate-based single-precursor pyrolysis route towards the fabrication of metal sulfides/carbon composites for energy storage applications.
Collapse
Affiliation(s)
- Zhishuo Yan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
24
|
Sheng P, Ye R, Wu D, Zhang L, An X, Tao S, Qian B, Chu PK. Morphological modulation of cobalt selenide on carbon cloth by Ni doping for high-performance electrodes in supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
|
26
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|
27
|
Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:303002. [PMID: 33892487 DOI: 10.1088/1361-648x/abfb3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2,and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported.
Collapse
Affiliation(s)
- Shweta Tanwar
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology, Kurukshetra-136119, Haryana, India
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
28
|
Gong J, Yang J, Wang J, Lv L, Wang W, Pu L, Zhang H, Dai Y. A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137794] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
An effective strategy for developing the CoMoS nanosheets wrapped by oxidized multi-walled carbon nanotubes as an electrosensor of oryzalin. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ye B, Cao X, Zhao Q, Wang J. Electrodeposited NiFe 2Se 4 on Nickel Foam as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beirong Ye
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianjun Cao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiang Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinshu Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
31
|
Isacfranklin M, Rani BJ, Ravi G, Yuvakkumar R, Hong SI, Velauthapillai D, Saravanakumar B. Hydrothermal Method–Derived MnMoO
4
Crystals: Effect of Cationic Surfactant on Microstructures and Electrochemical Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.202001384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Melkiyur Isacfranklin
- Nanomaterials LaboratoryDepartment of PhysicsAlagappa University Karaikudi 630 003 Tamil Nadu India
| | | | - G. Ravi
- Nanomaterials LaboratoryDepartment of PhysicsAlagappa University Karaikudi 630 003 Tamil Nadu India
| | - Rathinam Yuvakkumar
- Nanomaterials LaboratoryDepartment of PhysicsAlagappa University Karaikudi 630 003 Tamil Nadu India
| | - Sun Ig Hong
- Department of Nanomaterials EngineeringChungnam National University Daejeon, 305–764 South Korea
| | - Dhayalan Velauthapillai
- Faculty of Engineering and ScienceWestern Norway University of Applied Sciences Bergen 5063 Norway
| | - Balasubramaniam Saravanakumar
- Laboratory for Advanced Research in Polymeric Materials (LARPM)Central Institute of Plastics Engineering and Technology (CIPET) Bhubaneswar 751024 Odisha India
| |
Collapse
|
32
|
Arian R, Zardkhoshoui AM, Hosseiny Davarani SS. Rational Construction of Core‐Shell Ni−Mn−Co−S@Co(OH)
2
Nanoarrays toward High‐Performance Hybrid Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramtin Arian
- Department of ChemistryShahid Beheshti University, G. C. 1983963113, Evin Tehran Iran
| | | | | |
Collapse
|
33
|
Shen D, Liu Z, Fan L, Lu B. Organic phosphomolybdate: a high capacity cathode for potassium ion batteries. Chem Commun (Camb) 2020; 56:12753-12756. [DOI: 10.1039/d0cc05499b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work firstly introduces tetra-n-butylammonium phosphomolybdate into potassium ion batteries as a high capacity cathode.
Collapse
Affiliation(s)
- Dongyang Shen
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Zhaomeng Liu
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Ling Fan
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Bingan Lu
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body
| |
Collapse
|