1
|
Xi J, Lou Y, Meng L, Deng C, Chu Y, Xu Z, Xiao H, Wu W. Smart Cellulose-Based Janus Fabrics with Switchable Liquid Transportation for Personal Moisture and Thermal Management. NANO-MICRO LETTERS 2024; 17:14. [PMID: 39325227 PMCID: PMC11427652 DOI: 10.1007/s40820-024-01510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/10/2024] [Indexed: 09/27/2024]
Abstract
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort. However, the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge. Herein, a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat. The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel. Subsequently, hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient. The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side, and can dynamically and continuously control the transportation time in a wide range of 3-66 s as the temperature increases from 10 to 40 °C. This smart fabric can quickly dissipate heat at high temperatures, while at low temperatures, it can slow down the heat dissipation rate and prevent the human from becoming too cold. In addition, the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side. This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
Collapse
Affiliation(s)
- Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chao Deng
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
2
|
Wang G, Xie Z, Yu W, Mao S, Wang S, Zheng SY, Yang J. A Double-Layer Polyurethane Electrospun Membrane with Directional Sweat Transport Ability for Use as a Soft Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49813-49822. [PMID: 39229668 DOI: 10.1021/acsami.4c10854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Wearable electronics for long-term monitoring of physiological signals should be capable of removing sweat generated during daily motion, which significantly impacts signal stability, human comfort, and safety of the electronics. In this study, we developed a double-layer polyurethane (PU) membrane with sweat-directional transport ability that can be applied for monitoring strain signals. The PU membrane was composed of a hydrophilic, conductive layer and a relatively hydrophobic layer. The double-layer PU composite membrane exhibited varied pore size and opposite hydrophilicity on its two sides, enabling the spontaneous pumping of sweat from the hydrophobic side to the hydrophilic side, i.e., the directional transport of sweat. The membrane can be used as a strain sensor to monitor motion strain over a broad working range of 0% to 250% with high sensitivity (GF = 4.11). The sensor can also detect simple human movements even under sweating conditions. We believe that the strategy demonstrated here will provide new insights into the design of next-generation strain sensors.
Collapse
Affiliation(s)
- Gaopeng Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenli Yu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shuaibing Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
3
|
Zhang Z, Li J, Wang Y, Wang X, Wang L, Qiu Y, Li F, Li J, Ji M, Man J. Preparation of pH-sensitive porous polylactic acid-based medical dressing with self-pumping function. Int J Biol Macromol 2024; 267:131563. [PMID: 38626837 DOI: 10.1016/j.ijbiomac.2024.131563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer. The results showed that the preparation of porous PLLA fiber membrane loaded with 0.2 % Cur was achieved by adjusting the spinning-related parameters, which could ensure that the composite dressing had sufficient anti-inflammatory, antibacterial and antioxidant properties. The HPAN membrane treated with alkali for 30 min had significantly enhanced liquid wetting ability, and the unidirectional transport of liquid could be achieved by simple combination with the 20 um PCPLLA fiber membrane. In addition, the 4 % loaded PCA showed more obvious color difference than the colorimetric membrane. In vivo and ex vivo experiments have demonstrated the potential of multifunctional dressings for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Yi Wang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| | - Xiaojie Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Liming Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
4
|
Ma X, Wu X, Luo W, Liu Z, Wang F, Yu H. Large-Scale Wearable Textile-Based Sweat Sensor with High Sensitivity, Rapid Response, and Stable Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18202-18212. [PMID: 38551998 DOI: 10.1021/acsami.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Textile-based sweat sensors display great potential to enhance wearable comfort and health monitoring; however, their widespread application is severely hindered by the intricate manufacturing process and electrochemical characteristics. To address this challenge, we combined both impregnation coating technology and conjugated electrospinning technology to develop an electro-assisted impregnation core-spinning technology (EAICST), which enables us to simply construct a sheath-core electrochemical sensing yarn (TPFV/CPP yarn) via coating PEDOT:PSS-coated carbon fibers (CPP) with polyurethane (TPU)/polyacrylonitrile (PAN)/poloxamer (F127)/valinomycin as shell. The TPFV/CPP yarn was sewn into the fabric and integrated with a sensor to achieve a detachable feature and efficiently monitor K+ levels in sweat. By introducing EAICST, a speed of 10 m/h can be realized in the continuous preparation of the TPFV/CPP yarn, while the interconnected pores in the yarn sheath enable it to quickly capture and diffuse sweat. Besides, the sensor exhibited excellent sensitivity (54.26 mV/decade), fast response (1.7 s), anti-interference, and long-term stability (5000 s or more). Especially, it also possesses favorable washability and wear resistance properties. Taken together, this study provides a crucial technical foundation for the development of advanced wearable devices designed for sweat analysis.
Collapse
Affiliation(s)
- Xiangda Ma
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xueqi Wu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Wencan Luo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Zijin Liu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fei Wang
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
5
|
Pan J, Wang Z, Deng M, Zhang J, He H, Wang B, Liu X, Fu F. Construction of Janus structures on thin silk fabrics via misting for wet-thermal comfort and antimicrobial activity. J Colloid Interface Sci 2024; 656:587-596. [PMID: 37996256 DOI: 10.1016/j.jcis.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Owing to their small fiber diameter (10-15 μm), silk fabrics are always thin (32-90 g m-2). Therefore, construction of the Janus surfaces of silk fabrics that possess excellent multifunctionality remains a formidable challenge. Herein, first, silk fabrics were grafted using glycidyltrimethylammonium chloride to form a superhydrophilic surface (G-side). Then, a unilateral hydrophobic surface (O-side) was readily fabricated by mist coating octadecyltrichlorosilane-functionalized SiO2 nanoparticles (NPs) to produce hierarchical surface textures. To prevent NP penetration from the G-side to the O-side, a "fireproof isolation" method was employed. Consequently, Janus silk fabrics (JanSFs) bearing asymmetric wettability were prepared, and their wetting gradient could be conveniently regulated. With the mist time ranging from 4 to 7 min, the unidirectional transport index and efficiency of the unidirectional water transport increased and decreased by 13.2 and 10.4 times, respectively. Sweat could be effectively drained away from human skin to ensure that the skin was dry and comfortable. Compared with the surface temperature of the raw fabric, the raw fabric of JanSFs increased by 2.7 °C. Furthermore, the breathability of JanSF was negligibly affected, and the outer O-side of the JanSF showed substantial antibacterial activity. This study is important for designing JanSFs that exhibit unidirectional water transport.
Collapse
Affiliation(s)
- Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| |
Collapse
|
6
|
Wang Y, Wang H, Lu B, Yu K, Xie R, Lan G, Xie J, Hu E, Lu F. A sandwich-like silk fibroin/polysaccharide composite dressing with continual biofluid draining for wound exudate management. Int J Biol Macromol 2023; 253:127000. [PMID: 37739294 DOI: 10.1016/j.ijbiomac.2023.127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Optimal wound healing requires a wet microenvironment without over-hydration. Inspired by capillarity and transpiration, we have developed a sandwich-like fibers/sponge dressing with continuous exudate drainage to maintain appropriate wound moisture. This dressing is prepared by integrating a three-layer structure using the freeze-drying method. Layer I, as the side that contacts with the skin directly, consists of a hydrophobic silk fibroin membrane; Layer II, providing the pumping action, is made of superabsorbent chitosan-konjac glucomannan sponge; Layer III, accelerating evaporation sixfold compared to natural evaporation, is constructed with a graphene oxide soaked hydrophilic cellulose acetate membrane. Animal experiments showed that the composite dressing had superior wound-healing characteristics, with wounds decreasing to 24.8% of their original size compared to 28.5% for the commercial dressing and 43.2% for the control. The enhanced wound healing can be ascribed to the hierarchical porous structure serves as the fluid-driving factor in this effort; the hydrophilicity of a membrane composed of silk fibroin nanofibers is adjustable to regulate fluid-transporting capacity; and the photothermal effect of graphene oxide guarantees exudates that have migrated to the top layer to evaporate continuously. These findings indicate the unidirectional wicking dressing has the potential to become the next generation of clinical dressings.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Haoyu Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
7
|
Xia L, Li L, Xiao Y, Xiao F, Liu L, Chen X, Li X, Wang H. Active colorimetric bilayer polycaprolactone-eucalyptus oil@silk fibroin-bayberry anthocyanins (PCL-EO@SF-BAs) membrane with directional water transport (DWT) for food packaging. J Colloid Interface Sci 2023; 651:356-367. [PMID: 37544224 DOI: 10.1016/j.jcis.2023.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Currently, designing smart membranes with multifunctional effectiveness is crucial to food freshness monitoring and retention. Herein, an active colorimetric Janus bilayer membrane with directional water transport (DWT) performance is constructed by electrospinning, which comprises a hydrophilic layer of silk fibroin-bayberry anthocyanins (SF-BAs) and a hydrophobic layer of polycaprolactone-eucalyptus oil (PCL-EO). The entities of BAs and EO are well dispersed in the fiber matrix by hydrogen bonds and physical interactions, respectively. BAs endow the membrane colorimetric response and antioxidant activity, and EO contributes to the antibacterial activity while DWT performance is generated from the asymmetric wettability of the two layers. The bilayer membrane has an accumulative one-way transport index of 1077%, an overall moisture management capacity of 0.76 and a water evaporation rate of 0.48 g h-1. Moreover, the release of BAs and EO was predominantly controlled by Fickian diffusion. As a pH-sensing indicator, PCL-EO@SF-BAs is highly sensitive to external pH stimuli and the response is reversible. In addition to freshness monitoring, PCL-EO@SF-BAs can extend the shelf-life of pork beyond 100% at 4 °C. Also, it can extend the shelf life of shrimp by approximately 70% at 25 °C with the synergistic effect of antibacterial activity and the DWT performance.
Collapse
Affiliation(s)
- Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Lanhua Liu
- Instrumental Analysis Center, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Xiangying Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, China.
| |
Collapse
|
8
|
Chen L, Ahmed Babar A, Huang G, Zhao J, Yan W, Yu H, Feng Q, Wang X. Moisture wicking textiles with hydrophilic oriented polyacrylonitrile layer: Enabling ultrafast directional water transport. J Colloid Interface Sci 2023; 645:200-209. [PMID: 37149994 DOI: 10.1016/j.jcis.2023.04.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Functional textiles with high-performance directional water transport for regulating human sweat are in high demand because of growing concerns about the role of comfort in the performance of wearer. However, the fabrication of such materials remains a critical job. Here, we report a facile strategy to develop hydrophilic oriented polyacrylonitrile (HOPAN)/hydrophilic polylactic acid @polyvinylidene fluoride (HPLA@PVDF) composite membrane with surface energy gradient for enhanced directional water transport. Three step fabrication strategy involves electrospinning of oriented polyacrylonitrile (OPAN fibers) on polylactic acid (PLA) nonwoven surface followed by dip-coating in hydrophilic agent, and single-side electrospray of PVDF dilute solution on HOPAN/HPLA. Combination of highly oriented fiber structure, differential pore size and asymmetric wettability between two layers enabled instant water transport. The resultant fabricated composite membranes offer superior properties with one-way transport capacity (R) of 1117%, overall moisture management capacity (OMMC) of 0.91, and excellent water vapor transmission rate of 11.6 kg m-2 d-1. The successful preparation of these fascinating directional water transport materials offers new insight into the role of fiber alignment along with differential apertures and asymmetric chemical structure for realizing membranes for quick-drying applications.
Collapse
Affiliation(s)
- Lixia Chen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Aijaz Ahmed Babar
- Textile Engineering Department, Mehran University of Engineering & Technology, Jamshoro 76060, Pakistan
| | - Gang Huang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Weian Yan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China.
| | - Xianfeng Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
9
|
Xi P, He X, Fan C, Zhu Q, Li Z, Yang Y, Du X, Xu T. Smart Janus fabrics for one-way sweat sampling and skin-friendly colorimetric detection. Talanta 2023; 259:124507. [PMID: 37058940 DOI: 10.1016/j.talanta.2023.124507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Functionalized textiles with biofluid management capability have attracted tremendous attention in recent years due to their significant roles in health monitoring and dehydration prevention. Here we propose a one-way colorimetric sweat sampling and sensing system based on a Janus fabric using interfacial modification techniques. The opposite wettability of Janus fabric enables sweat to be quickly moved from the skin surface to the hydrophilic side and colorimetric patches. The unidirectional sweat-wicking performance of Janus fabric not only facilitates adequate sweat sampling but also inhibits the backflow of hydrated colorimetric regent from the assay patch toward the skin, eliminating potential epidermal contaminations. On this basis, visual and portable detection of sweat biomarkers including chloride, pH, and urea is also achieved. The results show that the true concentrations of chloride, pH, and urea in sweat are ∼10 mM, ∼7.2, and ∼10 mM, respectively. The detection limits of chloride and urea are 1.06 mM and 3.05 mM. This work bridges the gap between sweat sampling and a friendly epidermal microenvironment, providing a promising way for multifunctional textiles.
Collapse
Affiliation(s)
- Pengyu Xi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xuecheng He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chuan Fan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Zehua Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Zhang Y, Zhou J, Deng H, Fang Y, Qiao N, Ren M, Zhang Y, Zhang D, Lin H, Chen Y, Yong KT, Xiong J. Silk fibroin fibers-based shape memory membrane with Janus wettability for multitiered wearable protection. JOURNAL OF MATERIALS RESEARCH 2023; 38:633-643. [PMID: 36741987 PMCID: PMC9888350 DOI: 10.1557/s43578-022-00805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Realizing breathable shape memory fiber-based material with antibacterial and waterproof performances is important for multitiered wearable protection to address the increasing concerns of air pollution. Herein, using an alternating electrospinning-electrospraying technology, we develop a fiber-based membrane with Janus wettability based on a silk fibroin nanofibers-substrate (SFNFs), a polyurethane nanospheres-top layer (PUNSs), and a middle layer of PU nanofibers-mat with in-situ grown silver nanoparticles (PUNFs-AgNPs), which serves separately for skin contact, a self-cleaning physical barrier to resist external aerosol/bacteria (PM2.5 filtration efficiency ~ 98.1%), and a bio-barrier that can sterilize harmful particles and inhibit bacteria proliferation (> 95%). This breathable Janus film (SFNFs/PUNFs-AgNPs/PUNSs, SPAP) with an antibacterial filter shows shape memory stretchability enabled by the thermoplastic PU component, which is mechanically adaptive to human body for wearable protection. This work presents a breathable wearable material for air-filtration and anti-bacteria, promising for applications such as wound dressings, medical masks, protection suits, and multifunctional filters. GRAPHICAL ABSTRACT An alternating electrospinning-electrospraying technology was proposed to achieve a silk fibroin-based antibacterial membrane with Janus wettability, as well as good skin affinity and breathability, which serves well as physical and bio-barriers for water resistance, PM2.5 filtration (~98.1%) and bacteria inhibition (efficiency of 95%). This shape memory Janus membrane can adapt mechanically to human body curvatures for functional wearable protections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43578-022-00805-w.
Collapse
Affiliation(s)
- Yue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Jiahui Zhou
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Heli Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ying Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Na Qiao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Meng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123 China
| | - Hong Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yuyue Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ken Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| |
Collapse
|
11
|
Chen J, Rao Y, Zhu X, Wang J, Tang X, Feng S, Zhang F, Zhong Z, Xing W. Electrospun nanofibrous membranes with asymmetric wettability for unidirectional moisture transport, efficient PM capture and bacteria inhibition. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhang N, Zhu X, Wang Q, Zhou M, Wang P, Yu Y. Customizable bio-based coating of phase-transited lysozyme-COS for durable antibacterial and moisture management on wool fabric. Int J Biol Macromol 2022; 217:552-561. [PMID: 35843400 DOI: 10.1016/j.ijbiomac.2022.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
Textiles with efficient moisture management provide a comfortable microenvironment for human body. However, little attention has been paid to sweat-induced bacterial growth alongside. In this study, chitooligosaccharide (COS) was used to modify lysozyme (Lyz-COS) to obtain more excellent antibacterial activity. Lyz-COS could undergo an amyloid-like aggregation by reducing its disulfide bond and hydrogen bond triggered by thiourea dioxide (TD). The Phase-Transited Lyz-COS (PTL-COS) coating increases the hydrophilicity and antibacterial properties of wool fabrics, which can withstand 50 washing cycles and 100 rubbing cycles. In addition, two methods are proposed to customize Janus wool fabrics as desired. Method 1: The PTL-COS film was prepared first, and then the film was transferred to one side of the wool fabric. Method 2: Simply spray the PTL-COS solution on one side of the wool fabric. These two processes are simple to operate and can be customized on demand, enabling single transport of sweat and inhibiting sweat-induced bacterial growth. This work underlines the significance of chitooligosaccharide-modified PTL coatings for functionalization of textile surfaces and provides new insights into the development of more adaptable and smarter textiles and clothing.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Xiaohui Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| |
Collapse
|
13
|
Wang L, Zhou B, Bi Z, Wang C, Zheng L, Niu H, Cui P, Wang D, Li Q. Fabrication of Breathable Janus Membranes with Gradient Unidirectional Permeability by Micro-imprinting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Gorji M, Mazinani S, Gharehaghaji AA. A review on emerging developments in thermal and moisture management by membrane‐based clothing systems towards personal comfort. J Appl Polym Sci 2022. [DOI: 10.1002/app.52416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohsen Gorji
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | | |
Collapse
|
15
|
Highly directional water transport membrane made from a hybrid manufacturing approach: Unleashing the power of melt electrowriting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Lin Y, Wang C, Miao D, Cheng N, Meng N, Babar AA, Wang X, Ding B, Yu J. A Trilayered Composite Fabric with Directional Water Transport and Resistance to Blood Penetration for Medical Protective Clothing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18944-18953. [PMID: 35412798 DOI: 10.1021/acsami.2c03136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional textiles with enhanced moisture management can facilitate sweat transport away from the skin to improve personal comfort. However, porous materials exhibit low capability of preventing the intrusion of external liquids, becoming a bottleneck in the design of medical protective clothing. Herein, a trilayered composite fabric based on a gradient wettability structure is demonstrated for directional water transport and resistance to blood penetration. The proposed fabric shows distinct advantages, including a high water breakthrough pressure of 2.43 kPa from the external side, an outstanding positive water transport index (1522%), and an antiblood penetration resistance of 2.71 kPa. Moreover, the fabric shows improved comfort with a high moisture transmission (320 g m-2 h-1) and desired water evaporation rate (0.36 g h-1). This work addressed the concern of directional water transport and resistance to blood penetration while providing a comfortable wearing microenvironment, leading to a promising research direction for multifunctional medical textiles.
Collapse
Affiliation(s)
- Yanyan Lin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chao Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dongyang Miao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ningbo Cheng
- College of Fashion and Design, Donghua University, Shanghai 200051, China
| | - Na Meng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Aijaz Ahmed Babar
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107938. [PMID: 34969155 DOI: 10.1002/adma.202107938] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yifan Si
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yanting Han
- West China School of Nursing/West China Hospital Sichuan University Chengdu 610065 China
| | - Ting Wu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| | - Mohammad Irfan Iqbal
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Bin Fei
- Institute of Textiles and Clothing The Hong Kong Polytechnic University Kowloon Hong Kong SAR 999077 China
| | - Robert K. Y. Li
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinlian Hu
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinping Qu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| |
Collapse
|
18
|
Lang G, Grill C, Scheibel T. Site-Specific Functionalization of Recombinant Spider Silk Janus Fibers. Angew Chem Int Ed Engl 2022; 61:e202115232. [PMID: 34986278 PMCID: PMC9303884 DOI: 10.1002/anie.202115232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Biotechnological production is a powerful tool to design materials with customized properties. The aim of this work was to apply designed spider silk proteins to produce Janus fibers with two different functional sides. First, functionalization was established through a cysteine-modified silk protein, ntagCys eADF4(κ16). After fiber spinning, gold nanoparticles (AuNPs) were coupled via thiol-ene click chemistry. Significantly reduced electrical resistivity indicated sufficient loading density of AuNPs on such fiber surfaces. Then, Janus fibers were electrospun in a side-by-side arrangement, with "non-functional" eADF4(C16) on the one and "functional" ntagCys eADF4(κ16) on the other side. Post-treatment was established to render silk fibers insoluble in water. Subsequent AuNP binding was highly selective on the ntagCys eADF4(κ16) side demonstrating the potential of such silk-based systems to realize complex bifunctional structures with spatial resolutions in the nano scale.
Collapse
Affiliation(s)
- Gregor Lang
- Biopolymer Processing GroupUniversity of BayreuthLudwig-Thoma-Straße 36A95447BayreuthGermany
| | - Carolin Grill
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsUniversity of BayreuthTAO Gebäude, Prof.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| |
Collapse
|
19
|
Review on the Development and Application of Directional Water Transport Textile Materials. COATINGS 2022. [DOI: 10.3390/coatings12030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moisture (sweat) management in textile products is crucial to regulate human thermo-physiological comfort. Traditional hydrophilic textiles, such as cotton, can absorb sweat, but they retain it, leading to undesired wet adhesion sensation and even excessive cooling. To address such issues, the development of functional textiles with directional water transport (DWT) has garnered great deal of interest. DWT textile materials can realize directional water transport and prevent water penetration in the reverse direction, which is a great application for sweat release in daily life. In this review article, the mechanism of directional water transport is analyzed. Then, three key methods to achieve DWT performance are reviewed, including the design of the fabric structure, surface modification and electrospinning. In addition, the applications of DWT textile materials in functional clothing, electronic textiles, and wound dressing are introduced. Finally, the challenges and future development trends of DWT textile materials in the textile field are discussed.
Collapse
|
20
|
Liu S, Liang P, Liu J, Xin J, Li X, Shao C, Li X, Liu Y. Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. J Colloid Interface Sci 2022; 608:3178-3191. [PMID: 34802760 DOI: 10.1016/j.jcis.2021.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
Constructing floating photocatalysts with highly efficient visible-light utilization is a promising approach for practical photocatalytic wastewater treatment. In this study, we anchored bismuth oxybromo-iodide (BiOBrxI1-x (0 ≤ x ≤ 1)) on flexible electrospun polyacrylonitrile (PAN) nanofiber mats to create BiOBrxI1-x@PAN nanofibers with tunable light absorption properties as floating photocatalysts at room temperature. As x increased, the photocatalytic activity of the BiOBrxI1-x@PAN nanofibers with similar loading content initially increased, and then decreased, for the degradation of bisphenol A (BPA) and methyl orange (MO) under visible-light irradiation (λ > 420 nm) conditions. The BiOBrxI1-x@PAN (0 < x < 1) nanofibers exhibited better photocatalytic performance compared to the BiOBr@PAN and BiOI@PAN nanofibers. Under visible-light irradiation, the BPA degradation rate of the BiOBr0.5I0.5@PAN nanofibers was 1.9 times higher than that of the BiOI@PAN nanofibers, while the BiOBr@PAN nanofibers had no noticeable degradation performance. The MO degradation rate of the BiOBr0.5I0.5@PAN nanofibers was 2.5 and 3.2 times higher than that of the BiOBr@PAN and BiOI@PAN nanofibers, respectively. The enhanced performance possibly originated from a balance between the light absorption and redox capabilities, along with efficient separation of electron-hole pairs in the BiOBr0.5I0.5@PAN nanofibers, as determined by ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectra analysis of the valence bands, and photocurrent response characterization. Compared to the powder structures, the BiOBrxI1-x@PAN nanofibers showed enhanced performance due to the excellent dispersion and immobilization of the BiOBrxI1-x solid solution, which provided more active sites during photocatalytic degradation. In addition, their flexible self-supporting structures allowed for floating photocatalysis near the water surface. They could be reused directly without separation and maximized the absorption of visible light during the photocatalytic reaction. Therefore, these solid-solution-based floatable nanofiber photocatalysts are good potential candidates for wastewater treatment applications.
Collapse
Affiliation(s)
- Shuai Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China; College of Science, Northeast Electric Power University, 169 Changchun Street, Jilin 132012, People's Republic of China
| | - Pingping Liang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
21
|
Kasi G, Gnanasekar S, Zhang K, Kang ET, Xu LQ. Polyurethane‐based
composites with promising antibacterial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Sathishkumar Gnanasekar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Department of Chemical and Biomolecular Engineering National University of Singapore Kent Ridge Singapore
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| |
Collapse
|
22
|
Shao Z, Wang Q, Chen J, Jiang J, Wang X, Li W, Zheng G. Directional Water Transport Janus Composite Nanofiber Membranes for Comfortable Bioprotection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:309-319. [PMID: 34965141 DOI: 10.1021/acs.langmuir.1c02534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Janus membrane has a huge prospect for personal comfortable protection. However, there still is a huge imbalance between the comfort and protection of the existing Janus membrane. There is an urgent need to further improve the comprehensive performance of the protective membrane to realize both protection and comfort. Herein, we report the Janus membrane with directional water transport capacity and dust rejection performance by compounding the polyvinyl chloride hydrophobic nanofiber membrane and polyamide-6 blended polyvinyl pyrrolidone hydrophilic nanofiber membrane. This Janus composite nanofiber membrane exhibited an excellent dust rejection efficiency of 99.99%, air permeability of 42.15 mm/s, which was 76 times that of the commercial waterproof and breathable PTFE membrane, water vapor transmission rate of 4.89 kg/(m2 × 24 h), and accumulative one-way transport capacity of 888.7%. In addition, the breakthrough pressure of the Janus membrane in the reverse direction (i.e., hydrophilic layer to hydrophobic layer) was four times that in the positive direction (i.e., hydrophobic layer to hydrophilic layer), suggesting it to be a potential substrate for comfortable bioprotection with a comprehensive protection capability.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Junyu Chen
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Lang G, Grill C, Scheibel T. Site‐specific functionalization of recombinant spider silk Janus fibers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gregor Lang
- Universität Bayreuth: Universitat Bayreuth Biopolymerprocessing GERMANY
| | - Carolin Grill
- Universität Bayreuth: Universitat Bayreuth Biomaterials GERMANY
| | - Thomas Scheibel
- University of Bayreuth Biomaterials Prof. Rüdiger Bormann Str. 1 95447 Bayreuth GERMANY
| |
Collapse
|
24
|
Chen J, Low ZX, Feng S, Zhong Z, Xing W, Wang H. Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60763-60788. [PMID: 34913668 DOI: 10.1021/acsami.1c16047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membranes with asymmetric wettability have attracted significant interest by virtue of their unique transport characteristics and functionalities arising from different wetting behaviors of each membrane surface. The cross-sectional wettability distinction enables a membrane to realize directional liquid transport or multifunction integration, resulting in rapid advance in applications, such as moisture management, fog collection, oil-water separation, and membrane distillation. Compared with traditional homogeneous membranes, these membranes possess enhanced transport performance and higher separation efficiency owing to the synergistic or individual effects of asymmetric wettability. This Review covers the recent progress in fabrication, transport mechanisms, and applications of electrospun membranes with asymmetric wettability and provides a perspective on future development in this important area.
Collapse
Affiliation(s)
- Jiwang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Huang G, Jin Y, Huo L, Yuan S, Zhao R, Zhao J, Li Z, Li Y. An All-Hydrophobic Fluid Diode for Continuous and Reduced-Wastage Water Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51708-51717. [PMID: 34665605 DOI: 10.1021/acsami.1c14724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directional water transport that occurs in natural insects and plants is important to both organisms and advanced science and technology. Despite the many studies conducted to facilitate directional liquid transport by constructing double-layered hydrophilic/hydrophobic materials, it remains difficult to achieve continuous water transport and reduce liquid wastage due to the hydrophilic regions. Herein, a directional water transport fabric (DWTF) was fabricated using a simple single-side coating method based on entirely hydrophobic materials. With coating thicknesses of 13-29 μm, the fabric could guide the continuous water motion from the coated to the uncoated side and can be utilized as a "liquid diode". In addition, the DWTF exhibited a water wastage reduction during the transport process, benefiting from the intrinsic hydrophobic properties of the material. Moreover, a plausible mechanism of water transport is proposed to explain the water droplet transfer in the bilayered hydrophobic materials. Consequently, the resulting DWTF exhibited an excellent accumulative one-way transport capability (AOTC) of 965.7% and a desirable overall moisture management capability (OMMC) of 0.92. This work provides an avenue for fabricating smart fluid delivery materials to various applications such as flexible microfluidics, wound dressing, oil-water separation processes, and engineered desiccant materials.
Collapse
Affiliation(s)
- Gang Huang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yikai Jin
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liang Huo
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuaijie Yuan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ruixi Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhengrong Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangling Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
26
|
Wang Y, Xia G, Yu H, Qian B, Cheung YH, Wong LH, Xin JH. Mussel-Inspired Design of a Self-Adhesive Agent for Durable Moisture Management and Bacterial Inhibition on PET Fabric. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100140. [PMID: 34297447 DOI: 10.1002/adma.202100140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Functional textiles with advanced moisture management can enhance human comfort and physiological health. However, conventional wet finishing processes used for textiles are usually highly polluting and exhibit poor fastness. Inspired by the strong underwater adhesion properties of mussels based on cation-π interaction, a novel superhydrophilic polymeric molecule with strong cohesion and adhesion property is designed on a poly(ethylene terephthalate) (PET) fabric. The cation-π hydrophilic agent (CPHA) can efficiently transform the hydrophobic PET fabric to a superhydrophilic one, and its superhydrophilicity can withstand 150 home laundry cycles. In addition, the cationic moieties in the CPHA self-adhere to the PET fabric without any finishing auxiliary that would cause pollution. Due to its strong adhesion, CPHA can be applied to one side of the PET fabric via spray coating and curing to form a Janus hydrophobic/superhydrophilic fabric capable of diode-like one-way sweat transportation (with forward transportation capability of 1115% and backward transportation capability of -1509%). Moreover, the Janus fabric inhibits bacterial growth and invasion, while simultaneously preserving the inner ecological healthy balance of the skin's microflora. This work opens up a pathway to develop adhesives in textile wet processing for more diverse, smarter applications, e.g., quick-dry sportswear, protective suits, or air-conditioning fabrics.
Collapse
Affiliation(s)
- Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Xia
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Baitai Qian
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuk Ha Cheung
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Lan Heung Wong
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - John H Xin
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
27
|
Chi H, Xu Z, Wei Z, Zhang T, Wang H, Lin T, Zhao Y. Fabrics with Novel Air-Oil Amphibious, Spontaneous One-Way Water-Transport Capability for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29150-29157. [PMID: 34101407 DOI: 10.1021/acsami.1c06489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous media with directional water-transport capability have great applications in oil-water separation, moisture-harvesting, microfluidics, and moisture-management textiles. However, the previous directional water-transport materials chiefly work in the air. The materials with directional water-transport capability in the oil phase have been less reported. Here, we fabricated a novel Janus fabric with amphibious directional water-transport capability that can work both in the air and oil phases. It was prepared using dip coating and spraying to develop an oleophobic-hydrophobic to oleophobic-hydrophilic gradient across the thickness of the fabric substrate. The fabric allowed water droplets to rapidly transport from the hydrophobic to the hydrophilic side when the fabric was either in the air environment or fully immersed in oil. However, it hindered water transport in the opposite direction. More importantly, the fabric can overcome gravity to capture water from oil. Such an air-oil amphibious water-transport fabric showed excellent water collecting capability. In oil, it does not require any prewetting or extra pressure to perform directional water transport, which is vital for water-oil separation and microfluidics. Such amphibious directional water-transport function may be useful for the development of smart membranes and directional liquid delivery.
Collapse
Affiliation(s)
- Huanjie Chi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Zhenzhen Wei
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
28
|
Hong X, Wu HM, Zhang XR, Wei CJ, Chen DJ, Huang XJ. The micro-volume liquid focusing effect in Janus membrane and its biosensing application. J Colloid Interface Sci 2021; 592:22-32. [PMID: 33639535 DOI: 10.1016/j.jcis.2021.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
The micro-volume analysis and specific detection are both essential requirements in the field of chemical sensing and biological testing. Membrane prefiltration can be used to improve the selectivity and accuracy of detection. But for traditional porous membrane filtration, it is difficult to achieve the transmembrane transport of micro-volume liquid due to the influence of lateral diffusion on membrane surface. Herein, we studied the focused transmembrane transport of micro-volume liquid in the porous polyethersulfone membrane with asymmetric (Janus) surface wettability. The hydrophilic layer (polydopamine) and hydrophobic layer (fluoropolymer) were deposited with controllable thickness by dip-coating and roller-assisted liquid printing. The micro-volume liquid focusing effect was verified by experiments such as visual wetting circle and fluorescent tracer. The liquid focusing effect of as-prepared Janus membrane was integrated with glucose test strip in the application of micro-volume liquid biosensing. Compared with conventional porous membrane, detected signal amplitude and response time were improved 7.5× and 2.7×, respectively. In summary, this research studied the dynamics of liquid transport through Janus membrane and provides a new strategy for microfluidic detection applications through balancing detection volume, time and selectivity by the advantage of micro-volume liquid focusing effect.
Collapse
Affiliation(s)
- Xiao Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui-Min Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin-Ran Zhang
- Medical College, Hangzhou Normal University, Hangzhou 311121, China
| | - Chen-Jie Wei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Da-Jing Chen
- Medical College, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Feng Y, Zong D, Hou Y, Yin X, Zhang S, Duan L, Si Y, Jia Y, Ding B. Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. J Colloid Interface Sci 2021; 593:59-66. [PMID: 33744552 DOI: 10.1016/j.jcis.2021.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
Ultrafine fibrous porous materials obtained by electrospinning technology have broad application prospects in the field of noise reduction. However, the two-dimensional fibrous membranes faced low thickness and dense structure, resulting in a single internal structure and narrow sound absorption band. Here, we report a simple and robust strategy to prepare gradient structured fiber sponges with superelasticity and stretchability by combining humidity-assisted multi-step electrospinning and a unique physical/chemical dual cross-linking method. The prepared gradient structured fibrous sponge has a maximum tensile strength of 169 kPa and can lift a weight 10,000 times its weight without breaking. Besides, the material can still maintain a stable structure after 500 compression cycles at 60% strain. Meantime, the material has lightweight properties (density of 13.8 mg cm-3) and hydrophobicity (water contact angle of 152°). More importantly, the gradient change of porosity and pore diameter in the Z direction endowed the fibrous sponge material with high-efficiency absorption of broadband sound waves (with a noise reduction coefficient up to 0.53). The design of this gradient structured fiber sponge opens a new way for the development of ideal sound-absorbing materials.
Collapse
Affiliation(s)
- Yangyang Feng
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province, College of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Dingding Zong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yijie Hou
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province, College of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Lunyong Duan
- Jiangxi Zhihao Electronic-Tech Co, Ltd, Ganzhou 341000, China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yongtang Jia
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province, College of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
30
|
Ahmed Babar A, Zhao X, Wang X, Yu J, Ding B. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J Colloid Interface Sci 2020; 577:207-216. [DOI: 10.1016/j.jcis.2020.05.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023]
|
31
|
Sun C, Lu J, Wu Y, Meng M, Yu C, Dong Z, Chen M, Yan Y, Sun Y. Imitated Core-Shell Molecularly Imprinted Membranes for Selective Separation Applications: A Synergetic Strategy by Polydopamine and SiO2. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Kurakula M, Koteswara Rao G. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
34
|
Santiago-Martoral L, Figueroa A, Nicolau E. Lyotropic Liquid Crystal-Based Membranes for Water Remediation: Fabrication, Characterization and Performance Evaluation. ACS OMEGA 2020; 5:17940-17946. [PMID: 32743166 PMCID: PMC7391249 DOI: 10.1021/acsomega.0c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
In water remediation, biomimetic membranes are gaining much attention due to their selectivity, dynamic stability, nontoxicity, and biocompatibility. Lyotropic liquid crystals (LLCs) are self-organizing networks that can conform to an array of geometries with high pore densities. As such, LLCs are excellent membrane materials for water applications because they are water insoluble and are manipulated to conform to an array of morphologies that provide natural water channels that are readily tunable in size. They have the ability to create uniform pores, between the range of 1 and 5 nm, with large surface areas. Thus, this work focuses on the design, fabrication, and characterization of LLC-modified Janus-type membranes for forward osmosis applications. Physical characterization of the membranes was performed using scanning electron microscopy (SEM), and the results show an open-pore radius and the presence of both finger- and sponge-like pores depending on membrane preparation. The contact angle assessment indicates that as the membranes are further modified with other polymers (e.g., PAN), higher hydrophilicity and surface energy are achieved. Moreover, the Brunauer-Emmett-Teller (BET) analysis showed a significant variation in the pore distribution between membranes. Functionalized membranes presented satisfactory water flux and superior salt rejection compared to nonfunctionalized membranes. SupPACMoDS membranes are 83% more efficient at preventing salt back flux than the nonmodified version. This is credited to the thickness and pore structure provided by the PAN support layer in the membrane.
Collapse
Affiliation(s)
- Liz Santiago-Martoral
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Adrialis Figueroa
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Eduardo Nicolau
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad
Ste. 1701, San Juan, Puerto
Rico 00925-2537, United
States
- Molecular
Sciences Research Center, University of
Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|