1
|
Kim J, Jeong J, Hyun Y, Chung SK, Lee J. Electrostatic Stabilization of Nano Liquid Metals in Doped Nonpolar Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104143. [PMID: 34623028 DOI: 10.1002/smll.202104143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Liquid metals and alloys are attracting renewed attention owing to their potential for application in various advanced technologies. Eutectic gallium-indium (EGaIn) has been focused on in particular because of its integrated advantages of high conductivity, low melting point, and low toxicity. In this study, the colloidal behavior of nano-dispersed EGaIn in nonpolar oils is investigated. Although the nonpolar oil continuous phase is commonly considered to be free of electric charges, electrostatic repulsion appears to be crucial in the colloidal stabilization of the nano-dispersed EGaIn phases, the modulation of which is possible by doping the oil phases with different types of oil-soluble surfactants. The qualitative correlation between the observed colloidal stabilities and the "zero field" particle mobilities inferred from the field-dependent electrophoretic mobilities indicates that the electric charging of EGaIn particles in surfactant-doped nonpolar oils is a static phenomenon that is maintained in equilibrium, rather than a solely field-induced process. A systematic investigation of the charging properties of these unique biphasic particles, consisting of the liquid Ga-In bulk and the solid Ga2 O3 surface that formed spontaneously, reveals the complicated system-dependent nature of the charging mechanisms mediated by ionic and nonionic surfactants in nonpolar media.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Jinwon Jeong
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Youngbin Hyun
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Sang Kug Chung
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
2
|
Smith GN. Electrolytic conductivity of ionic polymers in a nonpolar solvent. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:52. [PMID: 32743710 DOI: 10.1140/epje/i2020-11976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The electrolytic conductivity of two electrolytes as solutions in the nonpolar solvent, n -dodecane, as a function of concentration has been studied. One was a small molecule electrolyte (tetraalkyl cation and a highly fluorinated tetraphenylborate anion), and the other was a macromolecular electrolyte (cation-containing poly(alkyl methacrylate) chain with the same anion). Two series of the macromolecular cation were prepared: one with entirely cation-containing molecules and the other with a small proportion (10%) cation-containing and the rest nonionic. The conductivity data were qualitatively similar for all systems, which formed both single ions and triple ions. The data from the two series of macromolecular electrolytes were particularly informative to understand some recent and counterintuitive electrokinetic data for particles that were stabilized by these polymers. Reducing the proportion of cationic chains in the stabilizer of the particles was found to increase their electrophoretic mobility. In the conductivity data in this study, reducing the proportion of cationic chains in solution was found to increase the magnitude of the single-ion equilibrium constant and suppress the formation of triple ions. These data should support the development of models to understand these electrokinetic results.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry, University of Sheffield, Brook Hill, S3 7HF, Sheffield, South Yorkshire, UK.
| |
Collapse
|