1
|
Song Z, Liu J, Luo J, Ngai T, Kwok MH, Sun G. Photo-responsive Pickering emulsions triggered by in-situ pH modulation using a photoacid generator. J Colloid Interface Sci 2024; 679:1150-1158. [PMID: 39423681 DOI: 10.1016/j.jcis.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Pickering emulsions that respond to changes in pH by the addition of acid or alkali have been extensively studied, but the development of photo-responsive Pickering emulsions has been more challenging. This study attempts to demonstrate a novel approach to achieve photo-responsiveness in Pickering emulsions by incorporating a photoacid generator (PAG) into the oil phase. Upon UV irradiation, the PAG is expected to release protons (H+), which can then regulate the pH of the emulsion system and control its stability. EXPERIMENTS Amphiphilic colloidal particles obtained by modifying silica particles with poly (2-(dimethylamino)ethyl methacrylate) (SiO2-PDMAEMA) are used to stabilize the Pickering emulsions. The protonation and deprotonation of the SiO2-PDMAEMA particles at different pH values allow for the tuning of emulsion stability. By introducing the PAG into the stable Pickering emulsion system and applying UV irradiation to trigger the in-situ release of H+, the pH of the emulsion is systematically decreased, and the corresponding changes in emulsion stability are investigated. FINDINGS The results show that UV irradiation alone cannot induce emulsion instability. However, when PAG is added to the oil phase, the Pickering emulsions exhibit a significant decrease in pH under UV irradiation, ultimately leading to emulsion destabilization and phase separation. At a UV intensity of 20 mW/cm2 for 2 min, the H+ release from the PAG significantly lower the emulsion's pH, causing the SiO2-PDMAEMA particles to detach from the oil-water interface and resulting in emulsion instability. Higher concentrations of SiO2-PDMAEMA particles in the emulsion require more PAG to induce instability, as confirm by confocal laser scanning microscopy (CLSM) image. This study presents a versatile approach to develop photo-responsive Pickering emulsions which can have potential applications in areas such as drug delivery, cosmetics, and responsive materials.
Collapse
Affiliation(s)
- Zichun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - To Ngai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Guo Y, Zhang X, Wang X, Zhang L, Xu Z, Sun D. Nanoemulsions Stable against Ostwald Ripening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1364-1372. [PMID: 38175958 DOI: 10.1021/acs.langmuir.3c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Ostwald ripening, the dominant mechanism of droplet size growth for an O/W nanoemulsion at high surfactant concentrations, depends on micelles in the water phase and high aqueous solubility of oil, especially for spontaneously formed nanoemulsions. In our study, O/W nanoemulsions were formed spontaneously by mixing a water phase with an oil phase containing fatty alcohol polyoxypropylene polyoxyethylene ether (APE). By monitoring periodically the droplet size of the nanoemulsions via dynamic light scattering, we demonstrated that the formed O/W nanoemulsions are stable against Ostwald ripening, i.e., droplet growth. In contrast, the nanoemulsion droplets grew with the addition of micelles, demonstrating the pivotal role of the presence of micelles in the water phase in the occurrence of Ostwald ripening. The influence of the initial phase of APE, the oil or water phase in which APE is present, on the micelle formation is discussed by the partition coefficient and interfacial adsorption of APE between the oil and water phase using a surface and interfacial tensiometer. In addition, the spontaneously formed O/W nanoemulsion, which is stable against Ostwald ripening, can be used as a nanocarrier for the delivery of water-insoluble pesticides. These results provide a novel approach for the preparation of stable nanoemulsions and contribute to elucidating the mechanism of instability of nanoemulsions.
Collapse
Affiliation(s)
- Yanlin Guo
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xinpeng Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaohan Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Li Zhang
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
3
|
Mao C, Soda Y, Robinson KJ, Forrest T, Bakker E. Mass Transfer from Ion-Sensing Component-Loaded Nanoemulsions into Ion-Selective Membranes: An Electrochemical Quartz Crystal Microbalance and Thin-Film Coulometry Study. ACS MEASUREMENT SCIENCE AU 2023; 3:45-52. [PMID: 36817005 PMCID: PMC9936608 DOI: 10.1021/acsmeasuresciau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Recent work has shown that ion-selective components may be transferred from nanoemulsions (NEs) to endow polymeric membranes with ion-selective sensing properties. This approach has also been used for nanopipette electrodes to achieve single-entity electrochemistry, thereby sensing the ion-selective response of single adhered nanospheres. To this date, however, the mechanism and rate of component transfer remain unclear. We study here the transfer of lipophilic ionic compounds from nanoemulsions into thin plasticized poly(vinyl chloride) (PVC-DOS) films by chronoamperometry and quartz crystal microbalance. Thin-film cyclic coulovoltammetry measurements serve to quantify the uptake of lipophilic species into blank PVC-DOS membranes. Electrochemical quartz crystal microbalance data indicate that the transfer of the emulsion components is insignificant, ruling out simple coalescence with the membrane film. Ionophores and ion-exchangers are shown to transfer into the membrane at rates that correlate with their lipophilicity if mass transport is not rate-limiting, which is the case with more lipophilic compounds (calcium and sodium ionophores). On the other hand, with less lipophilic compounds (valinomycin and cation-exchanger salts), transfer rates are limited by mass transport. This is confirmed with rotating disk electrode experiments in which a linear relationship between the diffusion layer thickness and current is observed. The data suggests that once the nanoemulsion container approaches the membrane surface, transfer of components occur by a three-phase partition mechanism where the aqueous phase serves as a kinetic barrier. The results help better understand and quantify the interaction between nanoemulsions and ion-selective membranes and predict membrane doping rates for a range of components.
Collapse
|
4
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
5
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
6
|
Wang X, Bou S, Klymchenko AS, Anton N, Collot M. Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. NANOMATERIALS 2021; 11:nano11030826. [PMID: 33807096 PMCID: PMC8005018 DOI: 10.3390/nano11030826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Nanoemulsions (NEs) are water-dispersed oil droplets that constitute stealth biocompatible nanomaterials. NEs can reach an impressive degree of fluorescent brightness owing to their oily core that can encapsulate a large number of fluorophores on the condition the latter are sufficiently hydrophobic and oil-soluble. BODIPYs are among the brightest green emitting fluorophores and as neutral molecules possess high lipophilicity. Herein, we synthesized three different natural lipid-BODIPY conjugates by esterification of an acidic BODIPY by natural lipids, namely: α-tocopherol (vitamin E), cholesterol, and stearyl alcohol. The new BODIPY conjugates were characterized in solvents and oils before being encapsulated in NEs at various concentrations. The physical (size, stability over time, leakage) and photophysical properties (absorption and emission wavelength, brightness, photostability) are reported and showed that the nature of the lipid anchor and the nature of the oil used for emulsification greatly influence the properties of the bright NEs.
Collapse
Affiliation(s)
- Xinyue Wang
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
| | - Sophie Bou
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Andrey S. Klymchenko
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Nicolas Anton
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
- Correspondence: (N.A.); (M.C.)
| | - Mayeul Collot
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
- Correspondence: (N.A.); (M.C.)
| |
Collapse
|
7
|
Liu Q, Gao Y, Fu X, Chen W, Yang J, Chen Z, Wang Z, Zhuansun X, Feng J, Chen Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201:111626. [PMID: 33631642 DOI: 10.1016/j.colsurfb.2021.111626] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Peppermint oil (PO) is one of the most popular and widely used essential oils. However, due to volatile and poor water solubility of volatile oil, its application in the fields of medicine and food is limited. In order to solve this problem, the high speed shearing technology was used to prepare the nanoemulsion from PO. By using a series of characterization methods, such as turbiscan scanning spectrum, dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), the best nanoemulsion formula was identified as PO 10 %, surfactant 8 % (Tween-60: EL-20 = 3:1) and deionized water 82 % (w/w). The inhibition strength of nanoemulsion on bacteria was evaluated by detecting the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) treated with peppermint oil nanoemulsion (PON) and observing the morphology of bacteria with biological scanning electron microscope (SEM). The results showed that PON had strong inhibitory effect on E. coli. At the concentration range of 0.02 μg/μL-0.2 μg/μL, the apoptosis rate of BEAS-2B cells was less than 10 % compared with control cells. All in all, the PON prepared under this formula is stable, which provides a reference for further exploration of essential oil as natural antibacterial materials in the future.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Functional Examination Department of Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
8
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|