1
|
Prajapati H, Gosai J, Chaudhari N, Busupalli B. Jute-Copper Nanocomposite Embedded PSf Membrane for Sustainable and Efficient Heavy Metal Removal from Water Sources. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:624-632. [PMID: 39707981 DOI: 10.1021/acs.langmuir.4c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Numerous corporations have overlooked environmental regulations concerning wastewater treatment, leading to a worldwide issue regarding hazardous pollutant discharge, particularly dyes and heavy metal ions, into river sources. Various industries, with water, energy, and biological sectors, actively employ membranes. Membranes capable of showing flux, metal and dye sorption, and catalysis have been developed and are extensively used by functionalizing the pores of ultrafiltration, microfiltration, and nanofiltration membranes with responsive properties. The enhancement of synthetic membrane performance can be achieved by developing new polymers or modifying the surface of existing polymers. In this study, high porosity and large internal pore volume polysulfone (PSf) membrane composites were produced on a laboratory scale by adjusting the polymer coagulation conditions during the phase inversion process, incorporating copper nanoparticles for antifouling properties, and utilizing pretreated natural jute fibers. A comprehensive characterization of the composites was conducted by using FTIR, XRD, XPS, ICP-MS, and SEM techniques. To calculate their possible uses in separation and purification methods, the performance of PSf-based membrane composites was evaluated in terms of heavy metal rejection rates (%) in water.
Collapse
Affiliation(s)
- Harsh Prajapati
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Jeny Gosai
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Nitin Chaudhari
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University (PDEU), Gandhinagar 382426, Gujarat, India
| |
Collapse
|
2
|
Li BH, Zhang KH, Wang XJ, Li YP, Liu X, Han BH, Li FT. Construction synergetic adsorption and activation surface via confined Cu/Cu 2O and Ag nanoparticles on TiO 2 for effective conversion of CO 2 to CH 4. J Colloid Interface Sci 2024; 660:961-973. [PMID: 38281477 DOI: 10.1016/j.jcis.2024.01.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
High-performance photocatalysts for catalytic reduction of CO2 are largely impeded by inefficient charge separation and surface activity. Reasonable design and efficient collaboration of multiple active sites are important for attaining high reactivity and product selectivity. Herein, Cu-Cu2O and Ag nanoparticles are confined as dual sites for assisting CO2 photoreduction to CH4 on TiO2. The introduction of Cu-Cu2O leads to an all-solid-state Z-scheme heterostructure on the TiO2 surface, which achieves efficient electron transfer to Cu2O and adsorption and activation of CO2. The confined nanometallic Ag further enhances the carrier's separation efficiency, promoting the conversion of activated CO2 molecules to •COOH and further conversion to CH4. Particularly, this strategy is highlighted on the TiO2 system for a photocatalytic reduction reaction of CO2 and H2O with a CH4 generation rate of 62.5 μmol∙g-1∙h-1 and an impressive selectivity of 97.49 %. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Bo-Hui Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kai-Hua Zhang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao-Jing Wang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Yu-Pei Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xinying Liu
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa (UNISA), Florida 1710, South Africa
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fa-Tang Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Tang Z, Wang Y, Qian W, Piao Z, Wang H, Zhang Y. Two-way rushing travel: Cathodic-anodic coupling of Bi 2O 3-SnO@CuO nanowires, a bifunctional catalyst with excellent CO 2RR and MOR performance for the efficient production of formate. J Colloid Interface Sci 2023; 652:1653-1664. [PMID: 37666197 DOI: 10.1016/j.jcis.2023.08.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) generates high value-added products and simultaneously reduces excess atmospheric CO2 concentrations, is regarded as a potential approach to achieve carbon neutrality. However, the kinetic process of the anode oxygen evolution reaction (OER) is slow, resulting in a poor electrochemical efficiency of CO2RR. It is a breakthrough to replace OER with methanol oxidation reaction (MOR), which has more advantageous reaction kinetics. Herein, this work proposed a bifunctional catalyst Bi2O3-SnO modified CuO nanowires (Bi2O3-SnO@CuO NWs) with excellent CO2RR and MOR performance. For CO2RR, Bi2O3-SnO@CuO NWs achieved more than 90% formate selectivity at wide potential windows from -0.88 to -1.08 V (vs. reversible hydrogen electrode (RHE)), peaking at 96.6%. Meanwhile, anodic Bi2O3-SnO@CuO NWs achieved 100 mA cm-2 at a low potential of 1.53 V (vs. RHE), possessing nearly 100% formate selectivity ranging from 1.6 to 1.8 V (vs. RHE). Impressively, by coupling cathodic CO2RR and anodic MOR, the integrated electrolytic cell realized co-production of formate (cathode: 94.7% and anode: 97.5%), minimizing the energy input by approximately 69%, compared with CO2RR. This work provided a meaningful perspective for the design of bifunctional catalysts and coupling reaction systems in CO2RR.
Collapse
Affiliation(s)
- Zheng Tang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Wenxuan Qian
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Zhe Piao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| |
Collapse
|
4
|
Xu B, Cai G, Gao Y, Chen M, Xu C, Wang C, Yu D, Qi D, Li R, Wu J. Nanofibrous Dressing with Nanocomposite Monoporous Microspheres for Chemodynamic Antibacterial Therapy and Wound Healing. ACS OMEGA 2023; 8:38481-38493. [PMID: 37867710 PMCID: PMC10586453 DOI: 10.1021/acsomega.3c05271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The excessive use of antibiotics and consequent bacterial resistance have emerged as crucial public safety challenges for humanity. As a promising antibacterial treatment, using reactive oxygen species (ROS) can effectively address this problem and has the advantages of being highly efficient and having low toxicity. Herein, electrospinning and electrospraying were employed to fabricate magnesium oxide (MgO)-based nanoparticle composited polycaprolactone (PCL) nanofibrous dressings for the chemodynamic treatment of bacteria-infected wounds. By utilizing electrospraying, erythrocyte-like monoporous PCL microspheres incorporating silver (Ag)- and copper (Cu)-doped MgO nanoparticles were generated, and the unique microsphere-filament structure enabled efficient anchoring on nanofibers. The composite dressings produced high levels of ROS, as confirmed by the 2,7-dichloriflurescin fluorescent probe. The sustained generation of ROS resulted in efficient glutathione oxidation and a remarkable bacterial killing rate of approximately 99% against Staphylococcus aureus (S. aureus). These dressings were found to be effective at treating externally infected wounds. The unique properties of these composite nanofibrous dressings suggest great potential for their use in the medical treatment of bacteria-infected injuries.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guoqiang Cai
- NICE Zhejiang Technology Co., Ltd, Hangzhou 310013, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Mingchao Chen
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenglong Wang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Renhong Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| |
Collapse
|
5
|
Wang K, Yu X, Yang F, Liu Z, Li Z, Zhang T, Niu J, Yao B. Research Progress on Cu
2
O‐based Type‐II Heterojunction Photocatalysts for Photocatalytic Removal of Antibiotics. ChemistrySelect 2022. [DOI: 10.1002/slct.202202186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kai Wang
- School of Science Xi'an University of Technology Xi'an 710048 China
- Material Corrosion and Protection Key Laboratory of Shaanxi Province Xi'an 710048 China
| | - Xiaojiao Yu
- School of Science Xi'an University of Technology Xi'an 710048 China
- Material Corrosion and Protection Key Laboratory of Shaanxi Province Xi'an 710048 China
| | - Fan Yang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Zongbin Liu
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Zongyang Li
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Ting Zhang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Jinfen Niu
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Binhua Yao
- School of Science Xi'an University of Technology Xi'an 710048 China
| |
Collapse
|
6
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
7
|
Zhang H, Wu K, Jiao E, Liu Y, Shi J, Lu M. Self-assembled supramolecule for synthesizing highly thermally conductive Cellulose/Carbon nitride nanocomposites with improved flame retardancy. J Colloid Interface Sci 2022; 608:2560-2570. [PMID: 34794805 DOI: 10.1016/j.jcis.2021.10.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
The fabrication of polymer composites with excellent thermal conductivity typically involves complex matrix or fillers modifications. This study proposed a simple technique based on precursor selection for obtaining highly thermally conductive cellulose nanofiber (CNF)/supramolecule-synthesized carbon nitride (SCN) composites. Fourier-transform infrared tests demonstrated the construction of hydrogen bonds between CNF and SCN; a highly ordered structure and relatively compact in-plane stacking were confirmed via scanning electron microscopy and X-ray diffraction characterizations. Consequently, the resultant CNF/SCN composites exhibited remarkable in-plane thermal conductivity of 11.83 ± 0.41 W m-1 K-1 at 30 wt% SCN content, which was attributed to the significantly reduced interfacial phonon scattering. It also showed evident improvements in electrical insulation and flame retardancy compared with the pure CNF film, where the volume resistivity, peak heat release rate, and total heat release were remarkably enhanced by 1242% and reduced by 59.9% and 15.8%, respectively. Further analysis of char residuals revealed a relatively dense surface, high concentration of carbon materials, and a high degree of graphitization, indicating that the char residual functioned as a robust physical barrier to effectively inhibit combustion. This study provides a facile approach to achieving high-efficiency improvements in thermal conductivity and flame retardancy, and simultaneously facilitating broader applications of carbon nitride in thermal management.
Collapse
Affiliation(s)
- Hangzhen Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, PR China
| | - Kun Wu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China.
| | - Enxiang Jiao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, PR China
| | - Yingchun Liu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China; CASH GCC (Nanxiong) Research Institute of New Materials Co., Ltd, Nanxiong 512400, PR China
| | - Jun Shi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China; New Materials Research Institute of CASCHEM (Chongqing) Co., Ltd, Chongqing 400714, PR China
| | - Mangeng Lu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| |
Collapse
|
8
|
Pachaiappan R, Rajendran S, Senthil Kumar P, Vo DVN, K.A. Hoang T. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Ashok A, Kumar A, Saad MAS, Al-Marri MJ. Electrocatalytic conversion of CO2 over in-situ grown Cu microstructures on Cu and Zn foils. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bhardwaj R, Sharma T, Nguyen DD, Cheng CK, Lam SS, Xia C, Nadda AK. Integrated catalytic insights into methanol production: Sustainable framework for CO 2 conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112468. [PMID: 33823414 DOI: 10.1016/j.jenvman.2021.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.
Collapse
Affiliation(s)
- Reva Bhardwaj
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, 16227, South Korea
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| |
Collapse
|
11
|
Jia J, Hao X, Chang Y, Jia M, Wen Z. Rational design of Cu 3PdN nanocrystals for selective electroreduction of carbon dioxide to formic acid. J Colloid Interface Sci 2020; 586:491-497. [PMID: 33190830 DOI: 10.1016/j.jcis.2020.10.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
The selective electrochemical reduction of CO2 yields value-added products that are important renewable energy resources for carbon recycling. In this study, Cu3PdN nanocrystals (NCs) exhibited higher electrocatalytic activity for carbon dioxide (CO2) reduction to formic acid (HCOOH) than as-prepared Cu3N and Cu3Pd NCs. In addition, the reaction yielded small amounts of CO (<5%), H2, and HCOOH as the main products, and the electrocatalytic activity of the Cu NCs was significantly enhanced by modification with N and Pd. This work demonstrates a simple and effective strategy for improving the electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xiaokai Hao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Nazir R, Khalfani A, Abdelfattah O, Kumar A, Saleh Saad MA, Ali S. Nanosheet Synthesis of Mixed Co 3O 4/CuO via Combustion Method for Methanol Oxidation and Carbon Dioxide Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12760-12771. [PMID: 33034455 DOI: 10.1021/acs.langmuir.0c02554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper represents a study of mixed Co3O4/CuO nanosheet (NS) synthesis via solution combustion synthesis for oxidation of methanol and carbon dioxide (CO2) conversion. The mixed oxide NS of Co3O4/CuO is a hybrid structure of Co3O4 and CuO NSs. We applied this mixed oxide NS of Co3O4/CuO for methanol oxidation and carbon dioxide (CO2) conversion, and the results revealed that the activity of the mixed oxide NS surpassed the activity of the corresponding individual Co3O4 and CuO metal oxide NSs, both in methanol oxidation and in CO2 conversion. The mass activity of the mixed Co3O4/CuO NS produced at 0.627 V versus Ag/AgCl during methanol oxidation (0.5 M) was 12 mA g-1, which is 2.4 times better than that of Co3O4, whose mass activity is 5 mA g-1, and 4 times better than that of the CuO NS, whose mass activity is 3 mA g-1. The methanol oxidation peak at 0.62 V versus Ag/AgCl was also more intense than individual oxides. The trend in performance of methanol oxidation follows the order: Co3O4/CuO > Co3O4 > CuO. In the case of CO2 reduction, we experienced that our product was formate, and this was proved by formate oxidation (formate is formed as a product during the reduction of CO2) on the surface of the Pt ring of a rotating ring-disc electrode. Similar to methanol oxidation, Co3O4/CuO also showed superior activity in carbon dioxide reduction. It was experienced that at -1.5 V, the current density rises to -24 mA/cm2 for the Co3O4/CuO NS, that is, 0.6 times that of the CuO NS, which is -15 mA/cm2, and 3 times more than that of the Co3O4 NS, which is 8 mA/cm2. The trend in performance of CO2 reduction follows the order: Co3O4/CuO > CuO > Co3O4.
Collapse
Affiliation(s)
- Roshan Nazir
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Chemistry, Bilkent University, Ankara Turkey, 06800 Bilkent, Ankara, Turkey
| | - Alanoud Khalfani
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omnia Abdelfattah
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anand Kumar
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Sardar Ali
- Gas Processing Center, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
13
|
Lee H, Kim YJ, Sohn Y, Rhee CK. Co-deposits of Pt and Bi on Au disk toward formic acid oxidation. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04794-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|