1
|
Lenzen P, Dingfelder F, Müller M, Arosio P. Portable Microfluidic Viscometer for Formulation Development and in Situ Quality Control of Protein and Antibody Solutions. Anal Chem 2024; 96:13185-13190. [PMID: 39093923 PMCID: PMC11325293 DOI: 10.1021/acs.analchem.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Viscosity of protein solutions is a critical product quality attribute for protein therapeutics such as monoclonal antibodies. Here we introduce a portable single-use analytical chip-based viscometer for determining the viscosity of protein solutions using low sample volumes of 10 μL. Through the combined use of a microfluidic viscometer, a smartphone camera for image capture, and an automated data processing algorithm for the calculation of the viscosity of fluids, we enable measurement of viscosity of multiple samples in parallel. We first validate the viscometer using glycerol-water mixtures and subsequently demonstrate the ability to perform rapid characterization of viscosity in four different monoclonal antibody formulations in a broad concentration (1 to 320 mg/mL) and viscosity (1 to 600 cP) range, showing excellent agreement with values obtained by a conventional cone-plate rheometer. Not only does the platform offer benefits of viscosity measurements using minimal sample volumes, but enables higher throughput compared to gold-standard methodologies owing to multiplexing of the measurement and single-use characteristics of the viscometer, thus showing great promise in developability studies. Additionally, as our platform has the capability of performing viscosity measurements at the point of sample collection, it offers the opportunity to employ viscosity measurement as an in situ quality control of therapeutic proteins and antibodies.
Collapse
Affiliation(s)
- Philippe
S. Lenzen
- ETH
Zürich, Department of Chemistry
and Applied Biosciences, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| | - Fabian Dingfelder
- Janssen
R&D, BTDS Analytical Development, 8200 Schaffhausen, Switzerland
| | - Marius Müller
- Janssen
R&D, BTDS Analytical Development, 8200 Schaffhausen, Switzerland
| | - Paolo Arosio
- ETH
Zürich, Department of Chemistry
and Applied Biosciences, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Muñoz R, Fuentealba JF, Michea S, Santana PA, Martinez JI, Casanova-Morales N, Salinas-Barrera V. Ultrasonic Sensor: A Fast and Non-Destructive System to Measure the Viscosity and Density of Molecular Fluids. BIOSENSORS 2024; 14:346. [PMID: 39056621 PMCID: PMC11274559 DOI: 10.3390/bios14070346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
This study presents the design and development of an ultrasonic sensor as a fundamental tool for characterizing the properties of fluids and biofluids. The analysis primarily focuses on measuring the electrical parameters of the system, which correlate with the density and viscosity of the solutions, in sample volumes of microliters and with high temporal resolution (up to 1 data point per second). The use of this sensor allows the fast and non-destructive evaluation of the viscosity and density of fluids deposited on its free surface. The measurements are based on obtaining the impedance versus frequency curve and the phase difference curve (between current and voltage) versus frequency. In this way, characteristic parameters of the transducer, such as the resonance frequency, phase, minimum impedance, and the quality factor of the resonant system, can characterize variations in density and viscosity in the fluid under study. The results obtained revealed the sensor's ability to identify two parameters sensitive to viscosity and two parameters sensitive to density. As a proof of concept, the unfolding of the bovine albumin protein was studied, resulting in a curve that reflects its unfolding kinetics in the presence of urea.
Collapse
Affiliation(s)
- Romina Muñoz
- Departamento de Física y Química, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago 8900000, Chile;
| | - Juan-Francisco Fuentealba
- Escuela de Ingeniería, Universidad Central de Chile, Avda. Santa Isabel 1186, Santiago 8330601, Chile;
| | - Sebastián Michea
- Grupo de Investigación Aplicada en Robótica e Industria 4.0, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Paula A. Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile;
| | - Juan Ignacio Martinez
- Ingeniería Civil Informática, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago 8900000, Chile;
| | | | - Vicente Salinas-Barrera
- Grupo de Investigación Aplicada en Robótica e Industria 4.0, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| |
Collapse
|
3
|
Prašnikar M, Proj M, Bjelošević Žiberna M, Lebar B, Knez B, Kržišnik N, Roškar R, Gobec S, Grabnar I, Žula A, Ahlin Grabnar P. The search for novel proline analogs for viscosity reduction and stabilization of highly concentrated monoclonal antibody solutions. Int J Pharm 2024; 655:124055. [PMID: 38554741 DOI: 10.1016/j.ijpharm.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Administration of monoclonal antibodies (mAbs) is currently focused on subcutaneous injection associated with increased patient adherence and reduced treatment cost, leading to sustainable healthcare. The main bottleneck is low volume that can be injected, requiring highly concentrated mAb solutions. The latter results in increased solution viscosity with pronounced mAb aggregation propensity because of intensive protein-protein interactions. Small molecule excipients have been proposed to restrict the protein-protein interactions, contributing to reduced viscosity. The aim of the study was to discover novel compounds that reduce the viscosity of highly concentrated mAb solution. First, the chemical space of proline analogs was explored and 35 compounds were determined. Viscosity measurements revealed that 18 proline analogs reduced the mAb solution viscosity similar to or more than proline. The compounds forming both electrostatic and hydrophobic interactions with mAb reduced the viscosity of the formulation more efficiently without detrimentally effecting mAb physical stability. A correlation between the level of interaction and viscosity-reducing effect was confirmed with molecular dynamic simulations. Structure rigidity of the compounds and aromaticity contributed to their viscosity-reducing effect, dependent on molecule size. The study results highlight the novel proline analogs as an effective approach in viscosity reduction in development of biopharmaceuticals for subcutaneous administration.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Blaž Lebar
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Benjamin Knez
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Nika Kržišnik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Aleš Žula
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Lapenna A, Dagallier C, Huille S, Tribet C. Poly(glutamic acid)-Based Viscosity Reducers for Concentrated Formulations of a Monoclonal IgG Antibody. Mol Pharm 2024; 21:982-991. [PMID: 38240032 PMCID: PMC10849046 DOI: 10.1021/acs.molpharmaceut.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
Above a concentration threshold, the viscosity of solutions of proteins increases abruptly, which hampers the injectability of therapeutic formulations. Concentrations above 200 g/L are an ideal goal for subcutaneous application of antibodies. Molecular additives, such as amino acids (e.g., arginine) help decrease the viscosity, but they are used at concentrations as high as about 200 mmol/L. We addressed the question of whether poly(amino acids) could be more efficient than small molecular additives. We observed marked fluidification of a model therapeutic monoclonal antibody (mAb) solution by poly(d,l-glutamic acid) and poly(l-glutamic acid) derivatives added at concentrations of <6.5 g/L (i.e., a mAb/polymer chain molar ratio between 4:1 and 1:1 mol/mol). The bare poly(glutamate) parent chains were compared with polyethylene glycol-grafted chains as PEGylation is a common way to enhance stability. Viscosity could be decreased to ∼20 mPa s as compared to values of ∼100 mPa s in the absence of polymers at 200 g/L mAb. Formation of complexes between the mAb and the polyglutamates was characterized by capillary electrophoresis analysis in dilute solutions (1 g/L mAb) and by observation of phase separation at higher concentrations, suggesting tight association at about 2:1 mol/mol mAb/polymer. Altogether, these results show that polyglutamate derivatives hold an untapped potential as an excipient for fluidification of concentrated protein solutions.
Collapse
Affiliation(s)
- Annamaria Lapenna
- Département
de Chimie, PASTEUR, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Camille Dagallier
- Biologics
Formulation & Process Development, Biologics
Drug Product Development Department, SANOFI R&D, 13 quai Jules Guesde- BP 14, Vitry-sur-Seine 94403, France
| | - Sylvain Huille
- Biologics
Formulation & Process Development, Biologics
Drug Product Development Department, SANOFI R&D, 13 quai Jules Guesde- BP 14, Vitry-sur-Seine 94403, France
| | - Christophe Tribet
- Département
de Chimie, PASTEUR, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
5
|
Chang KH, Park BJ, Nam KC. Aerosolization Performance of Immunoglobulin G by Jet and Mesh Nebulizers. AAPS PharmSciTech 2023; 24:125. [PMID: 37225929 DOI: 10.1208/s12249-023-02579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Recently, many preclinical and clinical studies have been conducted on the delivery of therapeutic antibodies to the lungs using nebulizers, but standard treatment guidelines have not yet been established. Our objective was to compare nebulization performance according to the low temperature and concentration of immunoglobulin G (IgG) solutions in different types of nebulizers, and to evaluate the stability of IgG aerosols and the amount delivered to the lungs. The output rate of the mesh nebulizers decreased according to the low temperature and high concentration of IgG solution, whereas the jet nebulizer was unaffected by the temperature and concentration of IgG. An impedance change of the piezoelectric vibrating element in the mesh nebulizers was observed because of the lower temperature and higher viscosity of IgG solution. This affected the resonance frequency of the piezoelectric element and lowered the output rate of the mesh nebulizers. Aggregation assays using a fluorescent probe revealed aggregates in IgG aerosols from all nebulizers. The delivered dose of IgG to the lungs in mice was highest at 95 ng/mL in the jet nebulizer with the smallest droplet size. Evaluation of the performance of IgG solution delivered to the lungs by three types of nebulizers could provide valuable parameter information for determination on dose of therapeutic antibody by nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Bong Joo Park
- Department of Electrical & Biological Physics and Institute of Biomaterials, Kwangwoon University, Seoul, 01897, South Korea
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea.
| |
Collapse
|
6
|
Chen Z, Wang X, Chen X, Huang J, Wang C, Wang J, Wang Z. Accelerating therapeutic protein design with computational approaches toward the clinical stage. Comput Struct Biotechnol J 2023; 21:2909-2926. [PMID: 38213894 PMCID: PMC10781723 DOI: 10.1016/j.csbj.2023.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 01/13/2024] Open
Abstract
Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, clinical translation of therapeutic protein is still largely hindered by different aspects of developability, including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, and deimmunization. Conventional optimization of the developability with widely used methods, like display technologies and library screening approaches, is a time and cost-intensive endeavor, and the efficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the accelerated advancement of computational methodologies has ushered in a transformative era in the field of therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the integration of cutting-edge computational strategies with conventional techniques presents a promising avenue to accelerate the progression of therapeutic protein design and optimization toward clinical implementation. Here, we compared the differences between therapeutic protein and small molecules in developability and provided an overview of the computational approaches applicable to the design or optimization of therapeutic protein in several developability issues.
Collapse
Affiliation(s)
- Zhidong Chen
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Juyang Huang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
7
|
Deiringer N, Leitner I, Friess W. Effect of the Tubing Material Used in Peristaltic Pumping in Tangential Flow Filtration Processes of Biopharmaceutics on Particle Formation and Flux. J Pharm Sci 2023; 112:665-672. [PMID: 36220395 DOI: 10.1016/j.xphs.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 02/18/2023]
Abstract
Tangential flow filtration (TFF) is a central step in manufacturing of biopharmaceutics. Membrane clogging leads to decreased permeate flux, longer process time and potentially complete failure of the process. The effect of peristaltic pumping with tubings made of three different materials on protein particle formation during TFF was monitored via micro flow imaging, turbidity and photo documentation. At low protein concentrations, pumping with a membrane pump resulted in a stable flux with low protein particle concentration. Using a peristaltic pump led to markedly higher protein particle formation dependent on tubing type. With increasing protein particle formation propensity of the tubing, the permeate flux rate became lower and the process took longer. The protein particles formed in the pump were captured in the cassette and accumulated on the membrane leading to blocking. Using tubing with a hydrophilic copolymer modification counteracted membrane clogging and flux decrease by reducing protein particle formation. In ultrafiltration mode the permeate flux decrease was governed by the viscosity increase rather than by the protein aggregation; but using modified tubing is still beneficial due to a lower particle burden of the product. In summary, using tubing material for peristaltic pumping in TFF processes which leads a less protein particle formation, especially tubing material with hydrophilic modification, is highly beneficial for membrane flux and particle burden of the product.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Imke Leitner
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
BioMThermDB 1.0: Thermophysical Database of Proteins in Solutions. Int J Mol Sci 2022; 23:ijms232315371. [PMID: 36499696 PMCID: PMC9741033 DOI: 10.3390/ijms232315371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
We present here a freely available web-based database, called BioMThermDB 1.0, of thermophysical and dynamic properties of various proteins and their aqueous solutions. It contains the hydrodynamic radius, electrophoretic mobility, zeta potential, self-diffusion coefficient, solution viscosity, and cloud-point temperature, as well as the conditions for those determinations and details of the experimental method. It can facilitate the meta-analysis and visualization of data, can enable comparisons, and may be useful for comparing theoretical model predictions with experiments.
Collapse
|
9
|
Kim SH, Yoo HJ, Park EJ, Lee W, Na DH. Impact of buffer concentration on the thermal stability of immunoglobulin G. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lalchandani DS, Paritala S, Gupta PK, Porwal PK. Application of Supervised and Unsupervised Learning Approaches for Mapping Storage Conditions of Biopharmaceutical Product-A Case Study of Human Serum Albumin. J Chromatogr Sci 2022:6640002. [PMID: 35817343 DOI: 10.1093/chromsci/bmac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022]
Abstract
The stability of biopharmaceutical therapeutics over the storage period/shelf life has been a challenging concern for manufacturers. A noble strategy for mapping best and suitable storage conditions for recombinant human serum albumin (rHSA) in laboratory mixture was optimized using chromatographic data as per principal component analysis (PCA), and similarity was defined using hierarchical cluster analysis. In contrast, separability was defined using linear discriminant analysis (LDA) models. The quantitation was performed for rHSA peak (analyte of interest) and its degraded products, i.e., dimer, trimer, agglomerates and other degradation products. The chromatographic variables were calculated using validated stability-indicating assay method. The chromatographic data mapping was done for the above-mentioned peaks over three months at different temperatures, i.e., 20°C, 5-8°C and at room temperature (25°C). The PCA had figured out the ungrouped variable, whereas supervised mapping was done using LDA. As an outcome result of LDA, about 60% of data were correctly classified with the highest sensitivity for 25°C (Aq), 25°C and 5-8°C (Aq with 5% glucose as a stabilizer), whereas the highest specificity was observed for samples stored at 5-8°C (Aq with 5% glucose as a stabilizer).
Collapse
Affiliation(s)
- Dimple S Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| | - Sreeteja Paritala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| | - Pawan Kumar Gupta
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Maharajpura, Gwalior, Madhya Pradesh 474 005, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| |
Collapse
|
11
|
Rheological Properties of Different Graphene Nanomaterials in Biological Media. MATERIALS 2022; 15:ma15103593. [PMID: 35629621 PMCID: PMC9147357 DOI: 10.3390/ma15103593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Carbon nanomaterials have received increased attention in the last few years due to their potential applications in several areas. In medicine, for example, these nanomaterials could be used as contrast agents, drug transporters, and tissue regenerators or in gene therapy. This makes it necessary to know the behavior of carbon nanomaterials in biological media to assure good fluidity and the absence of deleterious effects on human health. In this work, the rheological characterization of different graphene nanomaterials in fetal bovine serum and other fluids, such as bovine serum albumin and water, is studied using rotational and microfluidic chip rheometry. Graphene oxide, graphene nanoplatelets, and expanded graphene oxide at concentrations between 1 and 3 mg/mL and temperatures in the 25–40 °C range were used. The suspensions were also characterized by transmission and scanning electron microscopy and atomic force microscopy, and the results show a high tendency to aggregation and reveals that there is a protein–nanomaterial interaction. Although rotational rheometry is customarily used, it cannot provide reliable measurements in low viscosity samples, showing an apparent shear thickening, whereas capillary viscometers need transparent samples; therefore, microfluidic technology appears to be a suitable method to measure low viscosity, non-transparent Newtonian fluids, as it is able to determine small variations in viscosity. No significant changes in viscosity are found within the solid concentration range studied but it decreases between 1.1 and 0.6 mPa·s when the temperature raises from 25 to 40 °C.
Collapse
|
12
|
Srivastava A, O'Dell C, Bolessa E, McLinden S, Fortin L, Deorkar N. Viscosity reduction and stability enhancement of monoclonal antibody formulations using derivatives of amino acids. J Pharm Sci 2022; 111:2848-2856. [DOI: 10.1016/j.xphs.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
13
|
Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation Time Machine: A Platform for the Prediction and Optimization of Long-Term Antibody Stability Using Short-Term Kinetic Analysis. J Med Chem 2022; 65:2623-2632. [PMID: 35090111 PMCID: PMC8842250 DOI: 10.1021/acs.jmedchem.1c02010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Monoclonal antibodies
are the fastest growing class of therapeutics.
However, aggregation limits their shelf life and can lead to adverse
immune responses. Assessment and optimization of the long-term antibody
stability are therefore key challenges in the biologic drug development.
Here, we present a platform based on the analysis of temperature-dependent
aggregation data that can dramatically shorten the assessment of the
long-term aggregation stability and thus accelerate the optimization
of antibody formulations. For a set of antibodies used in the therapeutic
areas from oncology to rheumatology and osteoporosis, we obtain an
accurate prediction of aggregate fractions for up to three years using
the data obtained on a much shorter time scale. Significantly, the
strategy combining kinetic and thermodynamic analysis not only contributes
to a better understanding of the molecular mechanisms of antibody
aggregation but has already proven to be very effective in the development
and production of biological therapeutics.
Collapse
Affiliation(s)
- Marko Bunc
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christian Graf
- Technical Research and Development, Global Drug Development, Novartis, Hexal AG, 82041 Oberhaching, Germany
| | - Matjaž Bončina
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. Crit Rev Food Sci Nutr 2022; 63:5783-5799. [PMID: 34985365 DOI: 10.1080/10408398.2021.2024132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viscosity is a property of most foods. The consumption of the high-viscosity food is associated with a variety of physiological responses, one of which is their ability to regulate gastric emptying and modulate postprandial glycemic response. Gastric emptying has been proven to be a key step affecting the digestion and absorption of food, whereas, the relationship between viscosity and gastric emptying is still far away from being understood. Here, we reviewed the factors that influence food viscosity and food viscosity changes during digestion. Besides, the effect of food viscosity on gastric emptying and food-viscosity-physiological response were highlighted. Finally, "quantitative relationship" of viscosity and gastric emptying was discussed. This review can contribute to the understanding that how food viscosity affects gastric emptying, and help for developing foods that could control satiety and manage body weight for the specific populations.
Collapse
Affiliation(s)
- Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
15
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Molecular dynamics study of the effects of static and oscillating electric fields in ovalbumin. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Discovery of compounds with viscosity-reducing effects on biopharmaceutical formulations with monoclonal antibodies. Comput Struct Biotechnol J 2022; 20:5420-5429. [PMID: 36212536 PMCID: PMC9529560 DOI: 10.1016/j.csbj.2022.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Computational screening yielded 44 new viscosity-reducing agents on two model mAbs. Dual excipients for viscosity reduction and solution buffering were discovered. Compounds with three or more charges reduce the viscosity of model mAb formulations. Filtering based on physicochemical properties can be applied to other mAb formulations.
For the development of concentrated monoclonal antibody formulations for subcutaneous administration, the main challenge is the high viscosity of the solutions. To compensate for this, viscosity reducing agents are commonly used as excipients. Here, we applied two computational chemistry approaches to discover new viscosity-reducing agents: fingerprint similarity searching, and physicochemical property filtering. In total, 94 compounds were selected and experimentally evaluated on two model monoclonal antibodies, which led to the discovery of 44 new viscosity-reducing agents. Analysis of the results showed that using a simple filter that selects only compounds with three or more charge groups is a good ‘rule of thumb’ for selecting potential viscosity-reducing agents for two model monoclonal antibody formulations.
Collapse
|
17
|
Roche A, Gentiluomo L, Sibanda N, Roessner D, Friess W, Trainoff SP, Curtis R. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient. J Colloid Interface Sci 2021; 607:1813-1824. [PMID: 34624723 DOI: 10.1016/j.jcis.2021.08.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023]
Abstract
The viscosity of a monoclonal antibody solution must be monitored and controlled as it can adversely affect product processing, packaging and administration. Engineering low viscosity mAb formulations is challenging as prohibitive amounts of material are required for concentrated solution analysis, and it is difficult to predict viscosity from parameters obtained through low-volume, high-throughput measurements such as the interaction parameter, kD, and the second osmotic virial coefficient, B22. As a measure encompassing the effect of intermolecular interactions on dilute solution viscosity, the Huggins coefficient, kh, is a promising candidate as a parameter measureable at low concentrations, but indicative of concentrated solution viscosity. In this study, a differential viscometry technique is developed to measure the intrinsic viscosity, [η], and the Huggins coefficient, kh, of protein solutions. To understand the effect of colloidal protein-protein interactions on the viscosity of concentrated protein formulations, the viscometric parameters are compared to kD and B22 of two mAbs, tuning the contributions of repulsive and attractive forces to the net protein-protein interaction by adjusting solution pH and ionic strength. We find a strong correlation between the concentrated protein solution viscosity and the kh but this was not observed for the kD or the b22, which have been previously used as indicators of high concentration viscosity. Trends observed in [η] and kh values as a function of pH and ionic strength are rationalised in terms of protein-protein interactions.
Collapse
Affiliation(s)
- Aisling Roche
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK; Currently at: National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany; Currently at: Coriolis Pharma, Fraunhoferstraße 18B, 82152 Munich, Germany
| | - Nicole Sibanda
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Steven P Trainoff
- Wyatt Technology Corporation, 6330 Hollister Ave, Goleta, CA 93117, United States
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK.
| |
Collapse
|
18
|
Effects of monoclonal antibody concentration and type of bulking agent on critical quality attributes of lyophilisates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Cardillo AG, Castellanos MM, Desailly B, Dessoy S, Mariti M, Portela RMC, Scutella B, von Stosch M, Tomba E, Varsakelis C. Towards in silico Process Modeling for Vaccines. Trends Biotechnol 2021; 39:1120-1130. [PMID: 33707043 DOI: 10.1016/j.tibtech.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023]
Abstract
Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.
Collapse
Affiliation(s)
| | | | - Benoit Desailly
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Sandrine Dessoy
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Marco Mariti
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Rui M C Portela
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Bernadette Scutella
- Technical Research and Development, GSK, 14200 Shady Grove Rd, Rockville, MD 20850, USA
| | - Moritz von Stosch
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium; Current affiliation: Data How AG, Zürichstrasse 137, 8600 Dübendorf, Switzerland
| | - Emanuele Tomba
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Christos Varsakelis
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium.
| |
Collapse
|
20
|
Boksa K, Walsh P, Shah A. Case Study in the Design of a Surrogate Solution for Use in Biopharmaceutical Drug Product Process Development. AAPS PharmSciTech 2021; 22:32. [PMID: 33404995 DOI: 10.1208/s12249-020-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The use of an aqueous-based surrogate solution in at-scale process development for biopharmaceutical drug products enables significant reduction in the usage of costly drug substance and improves confidence in initial drug product production runs performed using active biotherapeutic. Strategies for the formulation design of a surrogate solution that is representative of the unit operations in a typical drug product manufacturing process for a biopharmaceutical are presented herein, and a case study for the development of a surrogate solution for an example protein drug product is discussed. The surrogate was shown to have similar physical attributes to the drug product, including viscosity, surface tension, and density. The surrogate was used in at-scale process development of compounding, filling, and lyophilization operations in a single technical run, and the performance was shown to be similar to that of the drug product solution, providing a cost-effective and readily available option for process development while minimizing operator exposure to potentially hazardous drug solution and limiting drug wastage.
Collapse
|