1
|
Zhou Q, Song M, Tian Y, Min M, Cui S, He X, Xiong C. PtCo nanoalloy embedded nitrogen-doped carbon nanotube for rechargeable Zn-air batteries. J Colloid Interface Sci 2025; 677:59-67. [PMID: 39137563 DOI: 10.1016/j.jcis.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The large-scale application of metal-air batteries strongly depends on the development of cost-effective, highly efficient, and durable bifunctional oxygen catalysts. In this work, a facile approach for preparing the monodisperse PtCo nanoalloy anchored the nitrogen-doped carbon nanotubes (PtCo/NCNT) for zinc-air batteries is reported. The nitrogen-doped carbon shell prevents PtCo nanoalloy from exfoliation, dissolution, and aggregation and enables the accessibility of electrolytes to the alloy surface and the electron transfer. Besides, the strong interaction between PtCo nanoalloy and nitrogen-doped carbon can efficiently modulate the electronic structure of the formed active sites. When used as a cathode catalyst, the constructed rechargeable zinc-air battery presents higher power density (268 mW cm-2), specific capacity (840 mAh g-1), and excellent stability. More importantly, the PtCo/NCNT catalyst allows the all-solid-state cell to exhibit remarkable flexibility and high round-trip efficiency at various bending states, demonstrating a potential possibility to replace the conventional Pt/C and RuO2 catalysts.
Collapse
Affiliation(s)
- Qiusheng Zhou
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Minmin Song
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Yuan Tian
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Min Min
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shiqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xianying He
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Chuanyin Xiong
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
2
|
Song K, Li G, Yu J, Zheng T, Wang J. Bamboo-like nitrogen-doped carbon nanotubes directly grown from commercial carbon black for encapsulating FeCo nanoparticles as efficient oxygen reduction electrocatalysts. J Colloid Interface Sci 2024; 679:364-372. [PMID: 39461125 DOI: 10.1016/j.jcis.2024.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Efficient methods for preparing carbon nanotube (CNT)-confined metal catalysts are of great significance for electrocatalysis. Hence, in this study, Fe and Co promoters were added to the precursors of commercial carbon black and melamine to form N-doped CNTs confined bimetallic catalysts (FeCo@N-CNTs) via in situ pyrolysis. The FeCo@N-CNT catalysts exhibited a bamboo-like morphology with FeCo alloy nanoparticles encapsulated in the CNTs and high activity toward the oxygen reduction reaction, with a half-wave potential of 0.864 mV, higher than that of commercial Pt/C (0.827 mV) in alkaline solutions. The catalytic performance is attributable to the synergistic effects between the FeCo alloy and N-doped CNT structure. Moreover, the confinement of the FeCo nanoparticles inside the CNTs imparted the prepared catalysts with resistance to methanol poisoning and long-term stability. This versatile method of synthesizing CNTs directly from carbon black provides a new strategy for preparing high-performance non-precious-metal-based N-doped CNT catalysts for practical fuel cell applications.
Collapse
Affiliation(s)
- Kunpeng Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, 1 Shida Road, Nanchong 637009, China
| | - Guanghui Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Junchen Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tianyue Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Rd, Ningbo 315201, China.
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
3
|
Huang Z, Li X, Li A, Yang Y, He L, Zhang Z, Wu S, Wang Y, Cai S, He Y, Liu X. MPNTEXT: An Interactive Platform for Automatically Extracting Metal-Polyphenol Networks and Their Applications from Scientific Literature. J Chem Inf Model 2024. [PMID: 39258795 DOI: 10.1021/acs.jcim.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, metal-polyphenol networks (MPNs) have gained significant attention due to their unique properties and broad applications across various fields. However, the burgeoning volume of MPN literature necessitates the automation of chemical information extraction from the extensive corpus of unstructured data, including scientific publications. To address this challenge, we proposed a platform named MPNTEXT, which utilized natural language processing techniques and machine learning algorithms to efficiently identify and extract pertinent information, thereby assisting users in comprehending complex MPNs and their textual descriptions of applications. Users can enter keywords, such as "Fe", "drug delivery", or "tannic acid", to retrieve relevant information, which is then presented in a structured format. This study aims to provide a user-friendly tool for collecting and retrieving MPN data and promotes data-driven material design. The platform offers researchers a more convenient and efficient way to design versatile MPNs and explore their applications.
Collapse
Affiliation(s)
- Zihui Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Andi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liqiang He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiwen Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Siwei Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuting Cai
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Li F, Wang H, Wang G, Ding M, Ma Q, Xu H, Jin Z. Novel Water-Splitting Electrolyzer Design Incorporating a Gas Diffusion Electrode and a Gel Membrane for Highly Efficient Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39078415 DOI: 10.1021/acs.langmuir.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Advancements in cost-effective, high-performance alkaline water-splitting systems are crucial for the hydrogen industry. While the significance of electrode material design has been widely acknowledged, the practical implementation of these advancements remains challenging. In this study, we focused on the holistic design of the electrolysis system and successfully developed a novel alkaline water-splitting electrolyzer. The unique configuration of our electrolyzer allows the designed NiFe-LDH/carbon cloth gas diffusion anode to interact solely with the PVA-based gel membrane and air, enabling the direct discharge of oxygen into the gas phase. This innovative feature accelerates anode bubble overflow, reduces gas interference, and decreases the system impedance by minimizing electrode spacing. As a result, by utilizing the NiFeSn-alloy/nickel mesh cathode, our electrolyzer achieves a high current density of 308 mA cm-2 at a cell voltage of 2.0 V and demonstrates exceptional stability over 1000 h.
Collapse
Affiliation(s)
- Fajun Li
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Huaizhu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guizhi Wang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Min Ding
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Qihui Ma
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Haifeng Xu
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Hu S, Wang K, Xu X, Wang Q. Co-doping regulation on Ni-based electrocatalysts to adjust the selectivity of oxygen reduction reaction for Zn-air batteries and H 2O 2 production. Dalton Trans 2024. [PMID: 39041789 DOI: 10.1039/d4dt01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Although Ni-based materials are widely used as electrocatalysts, it remains necessary to further explore their selectivity towards the four- or two-electron oxygen reduction reaction (ORR). Herein, it is proposed to synthesize NiO@NCNTs (NCNTs = N-doped carbon nanotubes) using a metal-organic framework (MOF), [Ni(BZIDA)(H2O)]n (NiMOF, BZIDA = benzimidazole-5,6-dicarboxylic acid), as a precursor after calcination with dicyandiamide (DCDA). Regarding NiO@NCNTs, small NiO particles are distributed in NCNTs derived from DCDA homogeneously. NiO@NCNTs act as a typical two-electron electrocatalyst. The H2O2 production rate of NiO@NCNTs reaches 0.5 mol g-1 h-1 at 0.46 V (vs. RHE). After the doping of Co2+ in NiMOF, Co/NiO@NCNTs were synthesized using a similar method, with the four-electron character shown in ORR. A Zn-air battery was assembled by applying Co/NiO@NCNTs as the cathode material. When discharge occurs at 5 and 10 mA cm-2, its specific capacitance reaches 779.3 and 832.2 mA h g-1 with an energy density of 928.6 and 948.5 W h kg-1, respectively. Theoretical calculations suggest a variation in ORR selectivity between NiO@NCNTs and Co/NiO@NCNTs, which results from their different interactions with OOH*. This study demonstrates the effect of the structure on ORR selectivity for Ni-based electrocatalysts.
Collapse
Affiliation(s)
- Songhan Hu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Kai Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Huang B, Zhang Y, Zhong H, Wu Y, Lin X, Xu W, Ma G. Strategy for the Preparation of ZnS/ZnO Composites Derived from Metal-Organic Frameworks toward Lithium Storage. Inorg Chem 2024; 63:12281-12289. [PMID: 38902887 DOI: 10.1021/acs.inorgchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The synergistic effect between multicomponent electrode materials often makes them have better lithium storage performance than single-component electrode materials. Therefore, to enhance surface reaction kinetics and encourage electron transfer, using multicomponent anode materials is a useful tactic for achieving high lithium-ion battery performance. In this article, ZnS/ZnO composites were synthesized by solvothermal sulfidation and calcination, with the utilization of metal-organic frameworks acting as sacrificial templates. From the point of material design, both ZnS and ZnO have high theoretical specific capacities, and the synergistic effect of ZnS and ZnO can promote charge transport. From the perspective of electrode engineering, the loose porous carbon skeleton that results from the calcination of metal-organic frameworks can enhance composite material conductivity as well as full electrolyte penetration and the area of contact between the electrolyte and active material, all of which are beneficial to enhancing lithium storage performance. As expected, ZnS/ZnO anode materials displayed remarkably high specific capacities and outstanding performance at different rates. Combining material design and electrode engineering, this paper provides another idea for preparing anode materials with excellent lithium storage properties.
Collapse
Affiliation(s)
- Baiying Huang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yuling Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Hua Zhong
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yongbo Wu
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Weiqin Xu
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China
| | - Guozheng Ma
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Irmawati Y, Tan DA, Balqis F, Iskandar F, Sumboja A. Trifunctional electrocatalysts based on a bimetallic nanoalloy and nitrogen-doped carbon with brush-like heterostructure. NANOSCALE 2024; 16:1833-1842. [PMID: 38167734 DOI: 10.1039/d3nr05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Trifunctional ORR/OER/HER catalysts are emerging for various sustainable energy storage and conversion technologies. For this function, employing materials with 1D structures leads to catalysts having limited surface area and structural robustness. Instead of 1D catalysts, heterostructured catalysts (i.e., catalysts consisting of interfaces created by combining diverse structural components) have attracted much attention due to their high efficiency. We have fabricated a directly grown 1D-1D heterostructured bimetallic N-doped carbon trifunctional catalyst based on Fe/Co bimetallic-organic frameworks, forming nanobrushes (FeCoNC-NB) with improved resistance to collapsing and substantial numbers of exposed active sites. The secondary 1D structure of this design contributes to creating interparticle conductive networks. By combining the brush-like heterostructure, FeCo alloy active sites, and N-doped carbon as support and for encapsulation of the metal, the catalyst features a high ORR Eonset value (1.046 V), low OER overpotential (363 mV), and comparable HER overpotential (254 mV) in alkaline electrolyte. Zn-air batteries with FeCoNC-NB demonstrate a power density of 195 mW cm-2 and a superior battery life of up to 350 h. Self-powered FeCoNC-NB-based water electrolyzers as energy conversion devices are also demonstrated. This work drives the progress of trifunctional catalysts based on heterostructured nonprecious metal N-doped carbon for energy storage and conversion developments.
Collapse
Affiliation(s)
- Yuyun Irmawati
- Doctoral Program of Nanosciences and Nanotechnology, Graduate School, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek gedung 440, Tangerang Selatan 15314, Indonesia
| | - Davin Adinata Tan
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Falihah Balqis
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
8
|
Xiao L, Wang Y, Fu T, Liu Q, Guo F, Zhang Y, Li M, Bo X, Liu T. Facile synthesis of ultrafine iron-cobalt (FeCo) nanocrystallite-embedded boron/nitrogen-codoped porous carbon nanosheets: Accelerated water splitting catalysts. J Colloid Interface Sci 2024; 654:150-163. [PMID: 37837851 DOI: 10.1016/j.jcis.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Designing two-dimensional (2D) porous carbon nanosheets is expected to boost the water splitting efficiency of low-cost iron (Fe) and cobalt (Co)-based catalysts. Nevertheless, the aggregations, tedious preparation procedures, and expensive precursors for synthesizing 2D porous carbon nanosheets have hindered their widespread application. Herein, for the first time, we developed a low-cost method for large-scale and rapid synthesis of the three-dimensional (3D) hierarchically porous architectures self-assembled by the ultrafine FeCo nanoparticles embedded and boron/nitrogen-codoped 2D porous carbon nanosheets (denoted as FeCo@BNPCNS). The optimal FeCo@BNPCNS-900 exhibited abundant porous channels, a large surface area, and vast carbon edges/defects. Therefore, 8.10 at% electrochemically active boron (B)/nitrogen (N) centers were doped into the porous carbon nanosheets. In an alkaline solution, the optimal FeCo@BNPCNS-900 nanosheets revealed excellent hydrogen evolution reaction (HER) electrocatalytic activity, surpassing commercial 20 wt% Pt/C. For instance, the HER potential at 10 mA cm-2 [-50.6 mV vs. reversible hydrogen electrode (RHE)] of FeCo@BNPCNS-900 was even 19.3 mV more positive than that of commercial 20 wt% Pt/C (-69.9 mV vs. RHE). Meanwhile, its oxygen evolution reaction (OER) catalytic activity was just a little worse than ruthenium oxide (RuO2). The water electrolysis cell of FeCo@BNPCNS-900 nanosheets just required a small voltage of 1.589 V for full water splitting to achieve 10 mA cm-2, even 70.3 mV more negative than that of the state-of-the-art 20 wt% Pt/C||RuO2 benchmark (1.660 V) with outstanding stability. The perfect 3D hierarchically porous and honeycomb-like architecture, abundant porous channels/mesopores, and uniformly dispersed electrocatalytically active sites on FeCo@BNPCNS-900 nanosheets were responsible for the outstanding water splitting performance. Finally, this study provides an efficient strategy for the large-scale, rapid, and low-cost synthesis of 2D porous carbon nanosheets without using any template, surfactant, or expensive precursors.
Collapse
Affiliation(s)
- Lan Xiao
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yibin Wang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Tingzheng Fu
- School of Materials and Energy, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Qiusen Liu
- School of Materials and Energy, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Fei Guo
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Mian Li
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Tingting Liu
- School of Materials and Energy, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China; Electron Microscopy Center, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China.
| |
Collapse
|
9
|
Ou G, Huang M, Lu X, Manke I, Yang C, Qian J, Lin X, Chen R. A Metal-Organic Framework-Derived Strategy for Constructing Synergistic N-Doped Carbon-Encapsulated NiCoP@N-C-Based Anodes toward High-Efficient Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307615. [PMID: 38111975 DOI: 10.1002/smll.202307615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/16/2023] [Indexed: 12/20/2023]
Abstract
Transition metal phosphides (TMPs) have been regarded as the prospective anodes for lithium-ion batteries (LIBs). However, their poor intrinsic conductivity and inevitable large volume variation result in sluggish redox kinetics and the collapse of electrode structure during cycling, which substantially hinders their practical use. Herein, an effective composite electrodes design strategy of "assembly and phosphorization" is proposed to construct synergistic N-doped carbon-encapsulated NiCoP@N-C-based composites, employing a metal-organic frameworks (MOFs) as sacrificial hosts. Serving as the anodes for LIBs, one representative P-NCP-NC-600 electrode exhibits high reversible capacity (858.5 mAh g-1 , 120 cycles at 0.1 A g-1 ) and superior long-cycle stability (608.7 mAh g-1 , 500 cycles at 1 A g-1 ). The impressive performances are credited to the synergistic effect between its unique composite structure, electronic properties and ideal composition, which achieve plentiful lithium storage sites and reinforce the structural architecture. By accompanying experimental investigations with theoretical calculations, a deep understanding in the lithium storage mechanism is achieved. Furthermore, it is revealed that a more ideal synergistic effect between NiCoP components and N-doped carbon frameworks is fundamentally responsible for the realization of superb lithium storage properties. This strategy proposes certain instructive significance toward designable high-performance TMP-based anodes for high-energy density LIBs.
Collapse
Affiliation(s)
- Guanrong Ou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Mianying Huang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiaomeng Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Chao Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
10
|
Aarimuthu G, Sathiasivan K, Varadharajan S, Balakrishnan M, Albeshr MF, Alrefaei AF, Kim W. Enhanced membraneless fuel cells by electrooxidation of ethylene glycol with a nanostructured cobalt metal catalyst. ENVIRONMENTAL RESEARCH 2023; 233:115601. [PMID: 36863657 DOI: 10.1016/j.envres.2023.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023]
Abstract
The advancement of effective and long-lasting electrocatalysts for energy storage devices is crucial to reduce the impact of the energy crisis. In this study, a two-stage reduction process was used to synthesize carbon-supported cobalt alloy nanocatalysts with varying atomic ratios of cobalt, nickel and iron. The formed alloy nanocatalysts were investigated using energy-dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy to determine their physicochemical characterization. According to XRD results, Cobalt-based alloy nanocatalysts form a face-centered cubic solid solution pattern, illustrating thoroughly mixed ternary metal solid solutions. Transmission electron micrographs also demonstrated that samples of carbon-based cobalt alloys displayed homogeneous dispersion at particle sizes ranging from 18 to 37 nm. Measurements of cyclic voltammetry, linear sweep voltammetry, and chronoamperometry revealed that iron alloy samples exhibited much greater electrochemical activity than non-iron alloy samples. The alloy nanocatalysts were evaluated as anodes for the electrooxidation of ethylene glycol in a single membraneless fuel cell to assess their robustness and efficiency at ambient temperature. Remarkably, in line with the results of cyclic voltammetry and chronoamperometry, the single-cell test showed that the ternary anode works better than its counterparts. The significantly higher electrochemical activity was observed for alloy nanocatalysts containing iron than for non-iron alloy catalysts. Iron stimulates nickel sites to oxidize cobalt to cobalt oxyhydroxides at lower over-potentials, which contributes to the improved performance of ternary alloy catalysts containing iron.
Collapse
Affiliation(s)
- Gayathri Aarimuthu
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Selvarani Varadharajan
- Department of Chemistry, St. Joseph's Institute of Technology, Old Mamallapuram Road, Chennai, 600 119, India
| | - Muthukumaran Balakrishnan
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|
11
|
Liang C, Tan S, Shao L, Xue X, Liu J, Liu N, Zhang W, Shi Q. Sensitive Current Sensor Based on a Lanthanide Framework with Lewis Basic Bipyridyl Sites for Cu 2+ Detection. Inorg Chem 2023. [PMID: 37296395 DOI: 10.1021/acs.inorgchem.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new Yb-based three-dimensional metal-organic framework with free Lewis basic sites, [Yb2(ddbpdc)3(CH3OH)2] (referred to as ACBP-6), from YbCl3 and (6R,8R)-6,8-dimethyl-7,8-dihydro-6H-[1,5]dioxonino[7,6-b:8,9-b']dipyridine-3,11-dicarboxylic acid (H2ddbpdc) was synthesized by a conventional solvothermal method. Two Yb3+ are connected by three carboxyl groups to form the [Yb2(CO2)5] binuclear unit, which is further bridged by two carboxyl moieties to produce a tetranuclear secondary building unit. With further ligation of the ligand ddbpdc2-, a 3-D MOF with helical channels is constructed. In the MOF, Yb3+ only coordinates with O atoms, leaving the bipyridyl N atoms of ddbpdc2- unoccupied. The unsaturated Lewis basic sites make this framework possible to coordinate with other metal ions. After growing the ACBP-6 in situ into a glass micropipette, a novel current sensor is formed. This sensor shows high selectivity and a high signal-to-noise ratio toward Cu2+ detection with a detection limit of 1 μM, due to the stronger coordination ability between the Cu2+ and the bipyridyl N atoms.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lixiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinxin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
12
|
Wu DH, Huang H, Ul Haq M, Zhang L, Feng JJ, Wang AJ. Lignin-derived iron carbide/Mn, N, S-codoped carbon nanotubes as a high-efficiency catalyst for synergistically enhanced oxygen reduction reaction and rechargeable zinc-air battery. J Colloid Interface Sci 2023; 647:1-11. [PMID: 37236099 DOI: 10.1016/j.jcis.2023.05.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Design of efficient and durable oxygen reduction reaction (ORR) electrocatalysts still remains challenge in sustainable energy storage and conversion devices. To achieve sustainable development, it is of importance to prepare high-quality carbon-derived ORR catalysts from biomass. Herein, Fe5C2 nanoparticles (NPs) were facilely entrapped in Mn, N, S-codoped carbon nanotubes (Fe5C2/Mn, N, S-CNTs) by a one-step pyrolysis of the mixed lignin, metal precursors and dicyandiamide. The resulting Fe5C2/Mn, N, S-CNTs had open and tubular structures, which exhibited positive shifts in the onset potential (Eonset = 1.04 V) and high half-wave potential (E1/2 = 0.85 V), showing excellent ORR characteristics. Further, the typical catalyst-assembled Zn-air battery showed a high power density (153.19 mW cm-2) and good cycling performance as well as obvious cost advantage. The research provides some valuable insights for rational construction of low-cost and environmentally sustainable ORR catalysts in clean energy field, coupled by offering some valuable insights for reusing biomass wastes.
Collapse
Affiliation(s)
- Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Mahmood Ul Haq
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Bai X, He L, Zhang W, Lv F, Zheng Y, Kong X, Wang D, Zhao Y. Bi 2MoO 6 Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091569. [PMID: 37177113 PMCID: PMC10181000 DOI: 10.3390/nano13091569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Artificial photosynthesis is promising to convert solar energy and CO2 into valuable chemicals, and to alleviate the problems of the greenhouse effect and the climate change crisis. Here, we fabricated a novel photocatalyst by directly growing Bi2MoO6 nanosheets on three-dimensional (3D) N,O-doped carbon (NO-C). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the designed photocatalyst ensured the close contact between Bi2MoO6 and NO-C, and reduced the stacking of the NO-C layers to provide abundant channels for the diffusion of CO2, while NO-C can allow for fast electron transfer. The charge transfer in this composite was determined to follow a step-scheme mechanism, which not only facilitates the separation of charge carriers but also retains a strong redox capability. Benefiting from this unique 3D structure and the synergistic effect, BMO/NO-C showed excellent performance in photocatalytic CO2 reductions. The yields of the best BMO/NO-C catalysts for CH4 and CO were 9.14 and 14.49 μmol g-1 h-1, respectively. This work provides new insights into constructing step-scheme photocatalytic systems with the 3D nanostructures.
Collapse
Affiliation(s)
- Xue Bai
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Lang He
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Wenyuan Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Fei Lv
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yayun Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xirui Kong
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Du Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
16
|
Song W, Cui S, Zhang J, Fan S, Chen L, Zhang HM, Zhang Y, Meng X. Three-Dimensional Carbon Foam Modified with Mg 3N 2 for Ultralong Cyclability of a Dendrite-Free Li Metal Anode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9421-9430. [PMID: 36780196 DOI: 10.1021/acsami.2c21558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to the development of a stable Li metal anode. Here, an ultralight Mg3N2-modified carbon foam (CF-Mg3N2) was fabricated as a collector to address these issues. The calculated results show that the CF-Mg3N2 composite is relatively stable in terms of energy. Based on the synergistic effect of the three-dimensional skeleton and the lithiophilic nature of Mg3N2, homogeneous lithium deposition/stripping was realized around the foam carbon skeleton with an extremely low nucleation overpotential (∼9.3 mV) and high retention of Coulombic efficiency (99.3%) as well as long cyclability (700 cycles and 3000 h in half and symmetrical cells, respectively). Meanwhile, Mg3N2-CF@Li//LiFePO4 full cells also showed better rate capability and more stable cycling capability than CF@Li//LiFePO4 and Li//LiFePO4 cells, exhibiting extreme practicality. Accordingly, the design concept mentioned in this work provides a far-reaching influence on the development of a stable Li metal anode.
Collapse
Affiliation(s)
- Wenxu Song
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shiqiang Cui
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiangjiang Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shangze Fan
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
| | - Han-Ming Zhang
- School of Material Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yatong Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaomin Meng
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
17
|
Liang X, Xiao H, Zhang T, Zhang F, Gao Q. A unique nanocomposite with FeCo nanoalloy anchored on S, N co-doped carbonaceous matrix for high bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalytic property in Zn-air battery. J Colloid Interface Sci 2023; 630:170-181. [DOI: 10.1016/j.jcis.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
|
18
|
Li W, Wang C, Lu X. Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Magnetic-Field-Induced Strain Enhances Electrocatalysis of FeCo Alloys on Anode Catalysts for Water Splitting. METALS 2022. [DOI: 10.3390/met12050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In water splitting, the oxygen evolution reaction (OER) performance of transition metal alloy catalysts needs to be further improved. To solve this problem, the method of an external magnetic field was used to improve the OER catalytic performance of the alloy catalyst. In this paper, FeCo alloys with different composition ratios were prepared by an arc melting method, and OER catalysts with different compositions were obtained by annealing treatment. Under the action of a magnetic field, all three groups of catalysts showed a better catalytic performance than those without a magnetic field. The overpotentials of Fe35Co65, Fe22Co78 and Fe15Co85 at a current density of 20 mA cm−2 were reduced by 12 mV, 6 mV and 2 mV, respectively. It is found that, due to the magnetostrictive properties of FeCo alloys, the catalyst itself will generate strain under the action of a magnetic field, and the existence of strain may be the main reason for the enhanced OER performance of the magnetic field. Therefore, this work provides a new idea for the development of magnetic material catalysts and a magnetic field to improve the performance of catalysts.
Collapse
|
20
|
Zhang Y, Wang P, Yang J, Li K, Zhang N, Liu G, Duan Y, Qiu J. Mechanochemical coordination self-assembly for Cobalt-based metal-organic framework-derived bifunctional oxygen electrocatalysts. J Colloid Interface Sci 2022; 613:733-746. [DOI: 10.1016/j.jcis.2021.12.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
|
21
|
Zhu D, Chen M, Huang Y, Li R, Huang T, Cao JJ, Shen Z, Lee SC. FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127593. [PMID: 34736177 DOI: 10.1016/j.jhazmat.2021.127593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde is a typical indoor air pollutant that has posed severely adverse effects on human health. Herein, a novel FeCo alloy nanoparticle-embedded nitrogen-doped carbon (FeCo@NC) was synthesized with the aim of tailoring the transition-metal d-band structure toward an improved formaldehyde oxidation activity for the first time. A unique core@shell metal-organic frameworks (MOFs) architecture with a Fe-based Prussian blue analogue core and Co-containing zeolite imidazole framework shell was firstly fabricated. Then, Fe and Co ion alloying was readily achieved owing to the inherent MOF porosity and interionic nonequilibrium diffusion occurring during pyrolysis. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectra confirm that small FeCo alloys in situ form in FeCo@NC, which exhibits a higher formaldehyde removal efficiency (93%) than the monometallic Fe-based catalyst and a remarkable CO2 selectivity (85%) at room temperature. Density functional theory calculations indicate the number of electrons transferred from the metal core to the outer carbon layer is altered by alloying Fe and Co. More importantly, a downshift in the d-band center relative to the Fermi level occurs from - 0.93 to - 1.04 eV after introducing Co, which could alleviate the adsorption of reaction intermediates and greatly improve the catalytic performance.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Rong Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tingting Huang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jun-Ji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Shun Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
22
|
Zhang R, Wang Z, Zhu L, Lv W, Fan D, Wang W. Effect of the Amount of Carbon/Nitrogen Feedstocks on Oxygen Reduction Reaction Activity of FeCoNi Nanoparticles Embedded in Nitrogen‐doped Carbon Matrix. ChemistrySelect 2022. [DOI: 10.1002/slct.202104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| | - Zheng Wang
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| | - Weixin Lv
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| | - Dahe Fan
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| | - Wei Wang
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology No. Middle Xiwang Avenue, Yancheng, 224051 China
| |
Collapse
|
23
|
Li J, Gu X, Chang J, Wu D, Xu F, Jiang K, Gao Z. Molybdenum oxide-iron, cobalt, copper alloy hybrid as efficient bifunctional catalyst for alkali water electrolysis. J Colloid Interface Sci 2022; 606:1662-1672. [PMID: 34507166 DOI: 10.1016/j.jcis.2021.08.174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
Efficient and durable non-precious catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is pivotal for practical water electrolysis toward clean hydrogen fuel. Herein, a molybdenum oxide-FeCoCu alloy hybrid (MoOx-FeCoCu) catalyst was designed by polyoxometallate (POM) molecular cluster mediated solvothermal alcoholysis and ammonolysis of metal salts followed by pyrolytic reduction treatment. The HER efficiency is substantially enhanced by the ternary alloy component, which is more close to the benchmark Pt/C catalyst, and the HER catalytic stability is also superior to Pt/C catalyst. Moreover, the MoOx-FeCoCu demonstrates high catalytic efficiency and rather good durability for OER. Benefitted by the bifunctional catalytic behaviors for HER and OER, the symmetric water electrolyzer based on the MoOx-FeCoCu electrode requires a low driving voltage of 1.69 V to deliver a response current density of 10 mA cm-2, which is comparable to that based on the benchmark Pt/C HER cathode and RuO2 OER anode. The current work offers a feasible way to design efficient bifunctional catalyst for water electrolysis via POM mediated co-assembly and calcination treatment.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Xinyu Gu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
24
|
Abstract
Porous organic polymers (POPs) composed of organic building units linked via covalent bonds are a class of lightweight porous network materials with high surface areas, tuneable pores, and designable components and structures. Owing to their well-preserved characteristics in terms of structure and composition, POPs applied as electrocatalysts have shown promising activity and achieved considerable advances in numerous electrocatalytic reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, N2 reduction reaction, nitrate/nitrite reduction reaction, nitrobenzene reduction reaction, hydrogen oxidation reaction, and benzyl alcohol oxidation reaction. Herein, we present a systematic overview of recent advances in the applications of POPs in these electrocatalytic reactions. The synthesis strategies, specific active sites, and catalytic mechanisms of POPs are summarized in this review. The fundamental principles of some electrocatalytic reactions are also concluded. We further discuss the current challenges of and perspectives on POPs for electrocatalytic applications. Meanwhile, the possible future directions are highlighted to afford guidelines for the development of efficient POP electrocatalysts.
Collapse
Affiliation(s)
- Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Wu L, Cen J, Ali A, Li J, Kang Shen P. W/Ni3(PO4)2@NC/NF nanorods via electrodeposition with carbonization as a bifunctional catalyst for electrocatalytic water splitting. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ. Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. NANOSCALE 2021; 13:15116-15141. [PMID: 34554169 DOI: 10.1039/d1nr01328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.
Collapse
Affiliation(s)
- Jue-Hyuk Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Yang L, Zhang L. Interfacial electronic modification of bimetallic oxyphosphides as Multi-functional electrocatalyst for water splitting and urea electrolysis. J Colloid Interface Sci 2021; 607:546-555. [PMID: 34520902 DOI: 10.1016/j.jcis.2021.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Electrochemical water or wastewater splitting is a sustainable development approach for both hydrogen generation and pollutant elimination. Herein, an N-engineering ultrathin bimetallic oxyphosphides nanosheets on Ni foam (CoNiOP/NF) as a multi-functional binder-free electrode was synthesized for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The catalytic activity of the composites could be improved through introducing N-doping via an in-situ transformation and heterogeneous metals by ion exchange. Both theoretical calculation and experimental investigations confirmed that electrons transferred from metal centers to anion at the interface, which was favor to accelerate the phase transformation to electrochemically active species and optimize the intermediates adsorption dynamics, thus providing greatly enhanced electrocatalytic activities. Assembled an electrolyzer using UOR replaced OER, it required only 1.42 V to achieve 50 mA cm-2 with long-term stability, 214 mV less than that required for HER‖OER. This work would be beneficial for the exploitation of non-noble metal-based electrocatalysts for simultaneous realization of energy-saving urea-assisted electrolytic hydrogen production and urea-containing wastewater purifying.
Collapse
Affiliation(s)
- Lijun Yang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
28
|
Bimetallic CoZn Nanocrystals Embedded in N-Doped Graphene Layers as Electrocatalysts for Oxygen Reduction Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03781-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Sun RM, Yao YQ, Wang AJ, Fang KM, Zhang L, Feng JJ. One-step pyrolysis synthesis of nitrogen, manganese-codoped porous carbon encapsulated cobalt-iron nanoparticles with superior catalytic activity for oxygen reduction reaction. J Colloid Interface Sci 2021; 592:405-415. [PMID: 33706153 DOI: 10.1016/j.jcis.2021.02.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Replacing precious metal catalysts with low-price and abundant catalysts is one of urgent goals for green and sustainable energy development. It is imperative yet challenging to search low-cost, high-efficiency, and long-durability electrocatalysts for oxygen reduction reaction (ORR) in energy conversion devices. Herein, three-dimensional low-cost Co3Fe7 nanoparticles/nitrogen, manganese-codoped porous carbon (Co3Fe7/N, Mn-PC) was synthesized with the mixture of dicyandiamide, cobalt (II) tetramethoxyphenylporphyrin (Co(II)TMOPP), hemin, and manganese acetate by one-step pyrolysis and then acid etching. The resultant Co3Fe7/N, Mn-PC exhibited excellent durability and prominent ORR activity with more positive onset potential (Eonset, 0.98 V) and half-wave potential (E1/2, 0.87 V) in 0.1 M KOH electrolyte, coupled with strong methanol resistance. The pyrolysis temperature and optimal balance of graphite with pyridine-nitrogen are of significance for the ORR performance. The prepared Co3Fe7/N, Mn-PC displayed excellent ORR performance over commercial Pt/C in the identical environment. It was ascribed to the uniform 3D architecture, Mn- and N-doping effects by finely adjusting the electronic structures, coupled with the synergistic catalytic effects of multi-compositions and multi-active sites. This work provides some constructive guidelines for preparation of low-cost and high-efficiency ORR electrocatalysts.
Collapse
Affiliation(s)
- Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - You-Qiang Yao
- Institute of Advanced Manufacturing Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
30
|
Kang Q, Lai D, Tang W, Lu Q, Gao F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chem Sci 2021; 12:3818-3835. [PMID: 34163652 PMCID: PMC8179442 DOI: 10.1039/d0sc06716d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
NiFe alloy catalysts have received increasing attention due to their low cost, easy availability, and excellent oxygen evolution reaction (OER) catalytic activity. Although it is considered that the co-existence of Ni and Fe is essential for the high catalytic activity, the identification of active sites and the mechanism of OER in NiFe alloy catalysts have been controversial for a long time. This review focuses on the catalytic centers of NiFe alloys and the related mechanism in the alkaline water oxidation process from the perspective of crystal structure/composition modulation and structural design. Briefly, amorphous structures, metastable phases, heteroatom doping and in situ formation of oxyhydroxides are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted OER kinetics. Furthermore, the construction of dual-metal single atoms, specific nanostructures, carbon material supports and composite structures are introduced to increase the abundance of active sites and promote mass transportation. Finally, a perspective on the future development of NiFe alloy electrocatalysts is offered. The overall aim of this review is to shed light on the exploration of novel electrocatalysts in the field of energy.
Collapse
Affiliation(s)
- Qiaoling Kang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Dawei Lai
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Wenyin Tang
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
31
|
Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting. MATERIALS 2020; 14:ma14010092. [PMID: 33379230 PMCID: PMC7795325 DOI: 10.3390/ma14010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Bimetallic cobalt (Co)-based coatings were prepared by a facile, fast, and low-cost electroless deposition on a copper substrate (CoFe, CoMn, CoMo) and characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Prepared coatings were thoroughly examined for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution (1 M potassium hydroxide, KOH) and their activity compared to that of Co and Ni coatings. All five coatings showed activity for both reactions, where CoMo and Co showed the highest activity for HER and OER, respectively. Namely, the highest HER current density was recorded at CoMo coating with low overpotential (61 mV) to reach a current density of 10 mA·cm−2. The highest OER current density was recorded at Co coating with a low Tafel slope of 60 mV·dec−1. Furthermore, these coatings proved to be stable under HER and OER polarization conditions.
Collapse
|