1
|
Ma Z, Han Y, Tan B, Yang C, Liu Z. A Developed Approach for Synthesizing Novel Fe 3O 4/FeO/BaCl 2 Composites with Broadband and High-Efficiency Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63795-63807. [PMID: 39499726 DOI: 10.1021/acsami.4c14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Designing high-performance microwave absorbing materials that are thin and exhibit strong absorption capabilities across a wide frequency range is critical for mitigating electromagnetic pollution through a simple, highly adaptable, and cost-effective approach. However, achieving these three targets remains a significant challenge. In this research a simple approach suitable for large-scale production of microwave absorbing materials, namely, Fe3O4/FeO/BaCl2 composites, is proposed, which includes the processes of chemical coprecipitation and calcination. The above approach can adjust the mass ratio of Fe3O4/FeO while prompt the formation of BaCl2 with mesoporous structure on the surface of Fe3O4/FeO, meeting the need for desirable microwave absorbing performance. Subsequently, the impacts of varying mass ratios of the Fe3O4/FeO/BaCl2 composites on microstructures, magnetic properties, and microwave absorption properties were examined. Based on this investigation, a mass ratio close to 3.5:5.5:1 was determined to be optimal. At this ratio, the Fe3O4/FeO/BaCl2 composites realize an effective absorption bandwidth of 6.70 GHz at only 1.16 mm thickness, covering the whole Ku-band, and the maximum reflection loss can be close to -46.8 dB at 1.4 mm. The robust microwave absorption performance of Fe3O4/FeO/BaCl2 composites can be attributed to heterostructured multi-interface structural design, the comprehensive effects of multiple reflections and dielectric/magnetic losses induced by BaCl2 with mesoporous structure as well as the aggregated Fe3O4/FeO particles. This work may offer insights into designing and preparing effective microwave absorption materials.
Collapse
Affiliation(s)
- Zhanyu Ma
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China
| | - Ying Han
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China
| | - Bin Tan
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China
| | - Cuicui Yang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China
| | - Zhiwei Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China
| |
Collapse
|
2
|
Liu R, Wang Y, Wang P, Kimura H, Wang B, Hou C, Sun X, Du W, Xie X. In Situ Loading of Ni 3ZnC 0.7 Nanoparticles with Carbon Nanotubes to 3D Melamine Sponge Derived Hollow Carbon Skeleton toward Superior Microwave Absorption and Thermal Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402438. [PMID: 38644689 DOI: 10.1002/smll.202402438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The simple and low-cost construction of a 3D network structure is an ideal way to prepare high-performance electromagnetic wave (EMW) absorption materials. Herein, a series of carbon skeleton/carbon nanotubes/Ni3ZnC0.7 composites (CS/CNTs/Ni3ZnC0.7) are successfully prepared by in situ growth of Ni3ZnC0.7 and CNTs on 3D melamine sponge carbon. With the increase of precursor, Ni3ZnC0.7 nanoparticles nucleate and catalyze the generation of CNTs on the surface of the carbon skeleton. The minimum reflection loss (RL) value of the S60min composite (loading time of 60 min) reaches -86.6 dB at 1.6 mm and effective absorption bandwidth (EAB, RL≤-10 dB) is up to 9.3 GHz (8.7-18 GHz). The 3D network sponge carbon with layered micro/nanostructure and hollow skeleton promotes multiple reflection and absorption mechanisms of incident EMW. The N-doping and defects can be equivalent to an electric dipole, providing dipole polarization to increase dielectric relaxation. The uniform Ni3ZnC0.7 nanoparticles and CNTs play a key role in dissipating electromagnetic energy, blocking heat transfer, and enhancing the mechanical properties of the skeleton. Fortunately, the composite displays a quite low thermal conductivity of 0.09075 W m·K-1 and good flexibility, which can provide insulation and quickly recover to its original state after being stressed.
Collapse
Affiliation(s)
- Ruilin Liu
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| | - YuKun Wang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| | - Peng Wang
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266011, China
| | - Hideo Kimura
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| | - Baolei Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 250102, China
| | - Chuanxin Hou
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| | - Xueqin Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
- Shandong University of Aeronautics, Binzhou, 256603, China
| | - Xiubo Xie
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, China
| |
Collapse
|
3
|
Yang D, Dong S, Cui T, Xin J, Xu X, Chen J, Xie Y, Chen G, Hong C, Zhang X. Multifunctional Carbon Fiber Reinforced C/SiOC Aerogel Composites for Efficient Electromagnetic Wave Absorption, Thermal Insulation, and Flame Retardancy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308145. [PMID: 38150646 DOI: 10.1002/smll.202308145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/15/2023] [Indexed: 12/29/2023]
Abstract
Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm-3, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the x/y and z directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the x/y and z directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.
Collapse
Affiliation(s)
- Dongdong Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shun Dong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tangyin Cui
- Shandong Research and Design Institute of Industrial Ceramics, Zibo, 255000, P. R. China
| | - Jianqiang Xin
- Institute for Aero Engine, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaojing Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jingmao Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yongshuai Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guiqing Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Changqing Hong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xinghong Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
4
|
Song Y, Zhu R, Liu Z, Dai X, Kong J. Phase-Transformation Nanoparticles Synchronously Boosting Mechanical and Electromagnetic Performance of SiBCN Ceramics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4234-4245. [PMID: 36648102 DOI: 10.1021/acsami.2c20397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precursor-derived silicoboron carbonitride ceramic (PDC-SiBCN) has attracted significant attention as an advanced electromagnetic (EM) wave-absorbing material. However, the inherent porous and brittle characteristics limit its application as a structural load component in an EM interference environment. In this study, phase-transformation HfO2 nanoparticles were incorporated into PDC-SiBCN to reduce volume shrinkage, improve bonding interactions, and control structural defects, simultaneously boosting the plastic deformation and EM performance of brittle ceramics. The obtained HfO2/SiBCN ceramic showed enhanced flexural strength of up to 430.1% compared with that of the pure SiBCN ceramic. Furthermore, the HfO2/SiBCN ceramic also demonstrated excellent high-temperature EM absorption. The minimum reflection coefficient (RCmin) could reach -45.26 dB, and the effective absorption bandwidth (EAB) covered 2.80 GHz of the X band at 2.28 mm thickness at room temperature. Furthermore, the RCmin can still reach -44.83 dB, and the EAB can cover 2.4 GHz at 1.58 mm even at 1073 K. This work shows that phase-transformation nanoparticles could simultaneously improve the deformation ability and EM wave absorption properties of SiBCN ceramics. The results could guide the design and preparation of PDCs with strong carrying capacity and excellent EM absorption, even in harsh environments.
Collapse
Affiliation(s)
- Yan Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an710072, P.R. China
| | - Runqiu Zhu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an710072, P.R. China
| | - Ziyu Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an710072, P.R. China
| | - Xingyi Dai
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an710072, P.R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an710072, P.R. China
| |
Collapse
|
5
|
Fan G, Xiong T, Mouldi A, Bouallegue B, Tran N, Mahmoud MZ. Enhanced electromagnetic interference shielding effectiveness of h-BN decorated micro cube-like CaTiO3/Cu nanocomposite. CERAMICS INTERNATIONAL 2022; 48:8529-8539. [DOI: 10.1016/j.ceramint.2021.12.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Wang C, Chen P, Li X, Zhu Y, Zhu B. Enhanced Electromagnetic Wave Absorption for Y 2O 3-Doped SiBCN Ceramics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55440-55453. [PMID: 34761903 DOI: 10.1021/acsami.1c16909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer-derived SiBCN ceramics (PDCs-SiBCN) are promising ultrahigh-temperature ceramics owing to their excellent high-temperature oxidation resistance and electromagnetic wave (EMW)-absorbing capability. In this paper, the microstructure evolutions, the dielectric properties, and EMW absorption properties of Y2O3-doped SiBCN ceramics were investigated. The results reveal that Y2O3 acting as a catalyst promotes the formation of SiC, BN(C), and graphite crystalline phases in the SiBCN ceramics, and these crystalline phases are constructed as conduction phases and polarization phases to enhance the EMW-adsorbing properties. The minimum reflection loss (RLmin) reaches -42.22 dB at 15.28 GHz, and the effective absorption bandwidth is 4.72 GHz (13.28-18.00 GHz). In addition, there is only 0.56 wt % mass loss for the Y2O3-doped SiBCN ceramics when they are heated from ambient temperature to 1500 °C in air, indicating that the Y2O3-doped SiBCN ceramics obtain excellent oxidation resistance at high temperature. We believe that rare metal oxidation is beneficial for the growth of crystalline phases in the PDCs, resulting in high EMW-absorbing properties and oxidation resistance. Thus, the research extends a novel method and design strategy for microstructure regulation and property enhancement of PDCs.
Collapse
Affiliation(s)
- Chengen Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Pingan Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiangcheng Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yingli Zhu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Boquan Zhu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
7
|
Kong M, Liu X, Jia Z, Wang B, Wu X, Wu G. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J Colloid Interface Sci 2021; 604:39-51. [PMID: 34261018 DOI: 10.1016/j.jcis.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
To obtain lightweight and efficient electromagnetic wave absorbing materials, Fe2O3@ZnCo-MOF composites were prepared in this paper by in-situ growth method, and CoFe alloys@ZnO@C composites were obtained by subsequent annealing process. By varying the loading of Fe2O3 during the synthesis process, a series of composites were obtained. Among them, CoFe alloys@ZnO@C-0.1 has the best electromagnetic wave absorption performance, which can reach a reflection loss (RL) of -40.63 dB at a thickness of 2.2 mm, while the reflection loss is -44.13 dB at a thickness of 5.0 mm, and the maximum effective absorption bandwidth (EAB) is 5.84 GHz at a thickness of 2.4 mm. The excellent performance can be attributed to the synergistic effect of the dielectric and magnetic properties of the composites as well as the effective impedance matching properties. Thus, the CoFe alloys@ZnO@C composite is expected to be a lightweight and efficient material for electromagnetic wave absorption.
Collapse
Affiliation(s)
- Mingyue Kong
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China; College of Chemistry and Chemical Engineering, Qingdao University, Shandong, Qingdao 266071, PR China; Weihai Innovation Institute, Qingdao University, Shandong 264200, PR China.
| | - Bingbing Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaomeng Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
8
|
Ramírez C, Belmonte M, Miranzo P, Osendi MI. Applications of Ceramic/Graphene Composites and Hybrids. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2071. [PMID: 33924114 PMCID: PMC8074343 DOI: 10.3390/ma14082071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
Research activity on ceramic/graphene composites and hybrids has increased dramatically in the last decade. In this review, we provide an overview of recent contributions involving ceramics, graphene, and graphene-related materials (GRM, i.e., graphene oxide, reduced graphene oxide, and graphene nanoplatelets) with a primary focus on applications. We have adopted a broad scope of the term ceramics, therefore including some applications of GRM with certain metal oxides and cement-based matrices in the review. Applications of ceramic/graphene hybrids and composites cover many different areas, in particular, energy production and storage (batteries, supercapacitors, solar and fuel cells), energy harvesting, sensors and biosensors, electromagnetic interference shielding, biomaterials, thermal management (heat dissipation and heat conduction functions), engineering components, catalysts, etc. A section on ceramic/GRM composites processed by additive manufacturing methods is included due to their industrial potential and waste reduction capability. All these applications of ceramic/graphene composites and hybrids are listed and mentioned in the present review, ending with the authors' outlook of those that seem most promising, based on the research efforts carried out in this field.
Collapse
Affiliation(s)
- Cristina Ramírez
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| | | | | | - Maria Isabel Osendi
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| |
Collapse
|