1
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
2
|
Wei F, Qi H, Li B, Cai R, Liao M, Li P, Zhan X, Zhu T, Xu H, Hu X, Lu JR, Zhou F. Probing the relevance of synergistic lipid membrane disruption to the eye irritation of binary mixed nonionic surfactants. J Colloid Interface Sci 2025; 678:854-863. [PMID: 39321641 DOI: 10.1016/j.jcis.2024.09.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Nonionic surfactant aerosols play a crucial role in many industries, but they can cause acute irritation to users' eyes during spraying. This cytotoxic process is associated with corneal cell necrosis causing cell membrane disruption. Industrial grade surfactants are typically polydisperse mixtures described by their nominal chemical structure but how the polydispersity affects their interactions with cell membrane, remains largely unexplored. A better understanding could benefit product formulations to maximise their efficiency whilst minimising their toxicity to the users. In this study, poly-oxyethylene glycol monododecyl ethers (C12E4, C12E23) were used to form ideal binary surfactant mixtures. The cytotoxicities of mono and polydispersed surfactants towards human corneal epithelial cells were examined, followed by a series of biophysical characterisations of interactions between surfactants and model cell membranes. Notably, to probe the journey of individual C12E4 and C12E23 surfactant molecules across the cell membrane from a binary surfactant mixture, "two-colour" neutron reflection measurements were achieved via Hydrogen/Deuterium substitution. The relative distributions of C12E4 and C12E23 across cell membranes and their nanostructural conformations revealed a synergistic membrane-lytic ability initiated by surfactant mixing, with the more hydrophobic C12E4 exhibiting stronger membrane binding potency than the hydrophilic C12E23. The exact molar ratio of C12E4 against C12E23 in the mixture determined how the mixed surfactant interacted with the cell membrane, and how the process directly impacted cytotoxicity and eye irritation. Thus, the cytotoxicity of polydisperse surfactants is not the same as monodisperse surfactant of the same average structure. This work provides a useful basis for the assessment of surfactant mixing by balancing their efficiency and toxicity.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000, Gansu, China; State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hao Qi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, Shandong, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000, Gansu, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, Shandong, China
| | - Rongsheng Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Peixun Li
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Xiaozhi Zhan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tao Zhu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000, Gansu, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, Shandong, China.
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Hu X, Liao M, Shen K, Ding K, Campana M, van der Kamp S, McInnes EF, Padia F, Lu JR. Unraveling How Membrane Nanostructure Changes Impact the Eye Irritation of Nonionic Alkyl Ethoxylate Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59087-59098. [PMID: 38078441 PMCID: PMC10739585 DOI: 10.1021/acsami.3c14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Nonionic surfactants used in agri-spraying processes may cause varying degrees of corneal irritation when they come in direct contact with farmers' eyes, and the exact irritations are thought to be determined by how surfactants interact with corneal cell membranes. However, how nonionic surfactants interact with cell membranes at the molecular and nano levels remains largely unexplored. In this study, the interactions between nonionic surfactants (alkyl ethoxylate, C12Em) and lipid membranes were examined by membrane permeability measurement, quartz crystal microbalance with dissipation, dual polarization interferometry, confocal laser scanning microscopy, and neutron reflection, aiming to reveal complementary structural features at the molecular and nano levels. Apart from the extremely hydrophobic surfactant C12E2, all nonionic surfactants studied could penetrate the model cell membrane composed of a phosphocholine lipid bilayer. Nonionic surfactants with intermediate amphiphilicity (C12E6) rapidly fused into the lipid membrane and stimulated the formation of pores across the lipid bilayer, consistent with the cytoplasm leakage and fast cell necrosis observed from the cytotoxicity study of corneal cells. In comparison, while hydrophobic and hydrophilic surfactants [those with long and short ethoxylates (C12E4,12,23)] could cause mild structural alteration to the outer lipid layer of the membrane, these structural changes were insufficient to elicit large cytoplasmic leakage rapidly and instead cell death occurred over longer periods of time due to changes in the membrane permeability. These results reveal the strong link of surfactant-lipid membrane interactions to surfactant cytotoxicity and the association with amphiphilicity of nonionic surfactants.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mingrui Liao
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Kangcheng Shen
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ke Ding
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mario Campana
- Rutherford
Appleton Laboratory, STFC ISIS Facility, Didcot OX11 0QX, U.K.
| | - Sophie van der Kamp
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Elizabeth F. McInnes
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Faheem Padia
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Jian R. Lu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Mixed micellar systems — efficient nanocontainers for the delivery of hydrophobic substrates. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Hu X, Carter J, Ge T, Liao M, Margaret Stephens A, Mclnnes EF, Padia F, Lu JR. Impacts of chain and head lengths of nonionic alkyl ethoxylate surfactants on cytotoxicity to human corneal and skin cells in agri-spraying processes*. J Colloid Interface Sci 2022; 628:162-173. [DOI: 10.1016/j.jcis.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
7
|
Alves AAS, Sousa FJPM, Sebastião M, Antunes FE. Influence of electrolytes on the structural and viscosity properties of mixed anionic–nonionic–zwitterionic surfactants in detergent formulations. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Hu X, Gong H, Liu H, Wang X, Wang W, Liao M, Li Z, Ma K, Li P, Rogers S, Schweins R, Liu X, Padia F, Bell G, Lu JR. Contrasting impacts of mixed nonionic surfactant micelles on plant growth in the delivery of fungicide and herbicide. J Colloid Interface Sci 2022; 618:78-87. [PMID: 35334364 DOI: 10.1016/j.jcis.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/13/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Nonionic alkyl ethoxylate surfactants are widely used in agrochemicals to facilitate the permeation of systemic herbicides and fungicides across the plant waxy film. Industrial grade surfactants are often highly mixed and how the mixing affects their interactions with pesticides and wax films remains largely unexplored. A better understanding could enable design of mixed nonionic surfactants for herbicides and fungicides to maximize their efficiency and reduce wastage whilst controlling their impact on plant wax films. EXPERIMENT In this study, nonionic surfactants with general structure n-oxyethylene glycol monododecyl ether (C12En) were used to form surfactant mixtures with the same average ethoxylate numbers but different hydrophilic-lipophilic balance (HLB) values. Their mixed micellar systems were then used to solubilize a herbicide diuron (DN) and a fungicide cyprodinil (CP), followed by plant wax solubilization upon contact with wax films. These processes were monitored by 1H NMR and SANS. FINDING Pesticide solubilization made surfactant micelles effectively more hydrophobic but subsequent wax dissolution caused pesticide release and the restoration of the micellar amphiphilicity. Nonionic surfactants with lower HLBs form larger nanoaggregates, show enhanced wettability, and have better ability to solubilize and permeate pesticides across the wax film, but may cause significant damage to plant growth. These observations help explain why herbicides applied on weeds would benefit from surfactants with lower HLB values while fungicides require surfactants with HLBs to balance between delivery efficiency and potential phytotoxicity risks.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xi Wang
- Department of Materials, School of Natural Sciences, the University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Weimiao Wang
- Department of Materials, School of Natural Sciences, the University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Peixun Li
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Sarah Rogers
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Xuqing Liu
- Department of Materials, School of Natural Sciences, the University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Faheem Padia
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Gordon Bell
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jian R Lu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
9
|
Liu H, Fa K, Hu X, Li Z, Ma K, Liao M, Zhang L, Schweins R, Maestro A, Li P, Webster JRP, Petkov J, Thomas RK, Lu JR. How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation? J Colloid Interface Sci 2021; 609:491-502. [PMID: 34863541 DOI: 10.1016/j.jcis.2021.11.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS l-carnitines in our body systems can be readily converted into acyl-l-carnitines which have a prominent place in cellular energy generation by supporting the transport of long-chain fatty acids into mitochondria. As biocompatible surfactants, acyl-l-carnitines have potential to be useful in technical, personal care and healthcare applications. However, the lack of understanding of the effects of their molecular structures on their physical properties has constrained their potential use. EXPERIMENTS This work reports the study of the influence of the acyl chain lengths of acyl-l-carnitines (CnLC) on solubility, surface adsorption and aggregation. Critical micellar concentrations (CMCs) of CnLC were determined by surface tension measurements. Neutron reflection (NR) was used to further examine the structure and composition of the adsorbed CnLC layer. The structural changes of the micellar aggregates under different concentrations of CnLC, pH and ionic strength were determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). FINDINGS C12LC is fully soluble over a wide temperature and concentration range. There is however a strong decline of solubility with increasing acyl chain length. The adsorption and aggregation behavior of C14LC was therefore studied at 30 °C and C16LC at 45 °C. The solubility boundaries displayed distinct hysteresis with respect to heating and cooling. The CMCs of C12LC, C14LC and C16LC at pH 7 were 1.1 ± 0.1, 0.10 ± 0.02 and 0.010 ± 0.005 mM, respectively, with the limiting values of the area per molecule at the CMC being 45.4 ± 2, 47.5 ± 2 and 48.8 ± 2 Å2 and the thicknesses of the adsorbed CnLC layers at the air/water interface increasing from 21.5 ± 2 to 22.6 ± 2 to 24.2 ± 2 Å, respectively. All three surfactants formed core-shell spherical micelles with comparable dimensional parameters apart from an increase in core radius with acyl chain length. This study outlines the effects of acyl chain length on the physicochemical properties of CnLCs under different environmental conditions, serving as a useful basis for developing their potential applications.
Collapse
Affiliation(s)
- Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ralf Schweins
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - Armando Maestro
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - Peixun Li
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Jordan Petkov
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Arxada, Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, UK.
| | - Robert K Thomas
- Physical and Theoretical Chemistry, University of Oxford, South Parks, Oxford OX1 3QZ, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
10
|
Yang Z, He S, Fang Y, Zhang Y. Viscoelastic Fluid Formed by Ultralong-Chain Erucic Acid-Base Ionic Liquid Surfactant Responds to Acid/Alkaline, CO 2, and Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3094-3102. [PMID: 33683107 DOI: 10.1021/acs.jafc.0c07466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a leftover of grease processing, the efficient utilization of erucic acid is still a challenge. An alternative strategy is to develop erucic acid-derived surfactants. However, erucic acid-based ionic liquid surfactants were barely involved. Here, a novel ionic liquid surfactant, benzyltrimethylammonium erucate (ErBTA), was developed by a simple neutralization reaction, and its aggregations in the diluted and concentrated solution were systematically studied by surface tension, conductivity, rheology, and cryo-TEM techniques. The results showed that ErBTA has a very low metaling point (-7.03 °C) and possesses excellent water solubility (Krafft temperature <4 °C). ErBTA alone starts to form micelles at a very low concentration (0.028 mmol/L) and then to form worm-based viscoelastic fluid at 4.07 mmol/L without any additives, exhibiting excellent self-assembly ability and thickening ability. This viscoelastic fluid formed by ErBTA can simultaneously respond to three stimuli: common acid/alkaline, CO2 gas, and light, accompanied by an interesting gel-sol conversion, reflecting microstructure transition from wormlike micelles to spherical micelles. Although in essence CO2 and light also act as pH regulators in the current system, they provide more sophisticated approaches to tune pH. Such a viscoelastic fluid with the characteristics of easy availability, renewability of raw materials, the simplicity of fabrication, good water-solubility, and excellent thickening ability may be an attractive candidate for clean fracturing in oil/gas recovery and fluid drag reduction.
Collapse
Affiliation(s)
- Zhe Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Yinjun Fang
- Zanyu Technology Group Company Ltd., Hangzhou 310009, P. R. China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|