1
|
Wang C, Wang B, Zhang Q, Zhang S. Tumor microenvironment-responsive cell-penetrating peptides: Design principle and precision delivery. Colloids Surf B Biointerfaces 2024; 242:114100. [PMID: 39024717 DOI: 10.1016/j.colsurfb.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Cell-penetrating peptides (CPPs) are promising vehicles for intracellular delivery of different cargoes. Although various CPPs are designed for targeted delivery of nanomedicines and anticancer drugs, their clinical approval is hampered by a lack of selectivity. In recent years, new approaches have been explored to address this drawback, and distinct strategies for tumor microenvironment (TME)-responsive activation have been developed. In this review, we first introduce the cellular uptake mechanisms of CPPs. We next extensively discuss the design principles and precision delivery of TME-responsive CPPs. Nine kinds of single stimulus-responsive CPPs, five kinds of multiple stimuli-responsive CPPs, three kinds of TME-responsive targeting CPPs, and two kinds of reversibly activatable CPPs (RACPPs) are systemically summarized. Then, TME-responsive CPPs for nanomedical applications are further discussed. Finally, we describe the translational applications of TME-responsive CPPs for anticancer drug delivery. These commentaries provide an insight into the design of next-generation activatable CPPs (ACPPs) for selective delivery of nanomedicines and anticancer drugs.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Miatmoko A, Octavia RT, Araki T, Annoura T, Sari R. Advancing liposome technology for innovative strategies against malaria. Saudi Pharm J 2024; 32:102085. [PMID: 38690211 PMCID: PMC11059525 DOI: 10.1016/j.jsps.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
This review discusses the potential of liposomes as drug delivery systems for antimalarial therapies. Malaria continues to be a significant cause of mortality and morbidity, particularly among children and pregnant women. Drug resistance due to patient non-compliance and troublesome side effects remains a significant challenge in antimalarial treatment. Liposomes, as targeted and efficient drug carriers, have garnered attention owing to their ability to address these issues. Liposomes encapsulate hydrophilic and/or hydrophobic drugs, thus providing comprehensive and suitable therapeutic drug delivery. Moreover, the potential of passive and active drug delivery enables drug concentration in specific target tissues while reducing adverse effects. However, successful liposome formulation is influenced by various factors, including drug physicochemical characteristics and physiological barriers encountered during drug delivery. To overcome these challenges, researchers have explored modifications in liposome nanocarriers to achieve efficient drug loading, controlled release, and system stability. Computational approaches have also been adopted to predict liposome system stability, membrane integrity, and drug-liposome interactions, improving formulation development efficiency. By leveraging computational methods, optimizing liposomal drug delivery systems holds promise for enhancing treatment efficacy and minimizing side effects in malaria therapy. This review consolidates the current understanding and highlights the potential of liposome strategies against malaria.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, 2 Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Retno Sari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
4
|
Ran Y, Hu J, Chen Y, Rao Z, Zhao J, Xu Z, Ming J. Morusin-Cu(II)-indocyanine green nanoassembly ignites mitochondrial dysfunction for chemo-photothermal tumor therapy. J Colloid Interface Sci 2024; 662:760-773. [PMID: 38377695 DOI: 10.1016/j.jcis.2024.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
5
|
Cao J, Zhu C, Cao Z, Ke X. CPPs-modified chitosan as permeability-enhancing chemotherapeutic combined with gene therapy nanosystem by thermosensitive hydrogel for the treatment of osteosarcoma. Int J Biol Macromol 2024; 267:130915. [PMID: 38561118 DOI: 10.1016/j.ijbiomac.2024.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Chenghong Zhu
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Ziqi Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China.
| |
Collapse
|
6
|
Sahagun DA, Lopuszynski JB, Feldman KS, Pogodzinski N, Zahid M. Toxicity Studies of Cardiac-Targeting Peptide Reveal a Robust Safety Profile. Pharmaceutics 2024; 16:73. [PMID: 38258084 PMCID: PMC10818749 DOI: 10.3390/pharmaceutics16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Targeted delivery of therapeutics specifically to cardiomyocytes would open up new frontiers for common conditions like heart failure. Our prior work using a phage display methodology identified a 12-amino-acid-long peptide that selectively targets cardiomyocytes after an intravenous injection in as little as 5 min and was hence termed a cardiac-targeting peptide (CTP: APHLSSQYSRT). CTP has been used to deliver imaging agents, small drug molecules, photosensitizing nanoparticles, exosomes, and even miRNA to cardiomyocytes. As a natural extension to the development of CTP as a clinically viable cardiac vector, we now present toxicity studies performed with the peptide. In vitro viability studies were performed in a human left ventricular myocyte cell line with 10 µM of Cyanine-5.5-labeled CTP (CTP-Cy5.5). In vitro ion channel profiles were completed for CTP followed by extensive studies in stably transfected cell lines for several GPCR-coupled receptors. Positive data for GPCR-coupled receptors were interrogated further with RT-qPCRs performed on mouse heart tissue. In vivo studies consisted of pre- and post-blood pressure monitoring acutely after a single CTP (10 mg/Kg) injection. Further in vivo toxicity studies consisted of injecting CTP (150 µg/Kg) in 60, 6-week-old, wild-type CD1, male/female mice (1:1), with cohorts of mice euthanized on days 0, 1, 2, 7, and 14 with inhalational CO2, followed by blood collection via cardiac puncture, complete blood count analysis, metabolic profiling, and finally, liver, renal, and thyroid studies. Lastly, mouse cardiac MRI was performed immediately before and after CTP (150 µg/Kg) injection to assess changes in cardiac size or function. Human left ventricular cardiomyocytes showed no decrease in viability after a 30 min incubation with CTP-Cy5.5. No significant activation or inhibition of any of seventy-eight protein channels was observed other than OPRM1 and COX2 at the highest tested concentration, neither of which were expressed in mouse heart tissue as assessed using RT-qPCR. CTP (10 mg/Kg) injections led to no change in blood pressure. Blood counts and chemistries showed no evidence of significant hematological, hepatic, or renal toxicities. Lastly, there was no difference in cardiac function, size, or mass acutely in response to CTP injections. Our studies with CTP showed no activation or inhibition of GPCR-associated receptors in vitro. We found no signals indicative of toxicity in vivo. Most importantly, cardiac functions remained unchanged acutely in response to CTP uptake. Further studies using good laboratory practices are needed with prolonged, chronic administration of CTP conjugated to a specific cargo of choice before human studies can be contemplated.
Collapse
Affiliation(s)
- Daniella A. Sahagun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Jack B. Lopuszynski
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Kyle S. Feldman
- Clinical Virology Laboratory, Yale New Haven Hospital, New Haven, CT 06511, USA;
| | - Nicholas Pogodzinski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Maliha Zahid
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| |
Collapse
|
7
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Sun Z, Huang J, Fishelson Z, Wang C, Zhang S. Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress. Biomedicines 2023; 11:1971. [PMID: 37509610 PMCID: PMC10377493 DOI: 10.3390/biomedicines11071971] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs), developed for more than 30 years, are still being extensively studied due to their excellent delivery performance. Compared with other delivery vehicles, CPPs hold promise for delivering different types of drugs. Here, we review the development process of CPPs and summarize the composition and classification of the CPP-based delivery systems, cellular uptake mechanisms, influencing factors, and biological barriers. We also summarize the optimization routes of CPP-based macromolecular drug delivery from stability and targeting perspectives. Strategies for enhanced endosomal escape, which prolong its half-life in blood, improved targeting efficiency and stimuli-responsive design are comprehensively summarized for CPP-based macromolecule delivery. Finally, after concluding the clinical trials of CPP-based drug delivery systems, we extracted the necessary conditions for a successful CPP-based delivery system. This review provides the latest framework for the CPP-based delivery of macromolecular drugs and summarizes the optimized strategies to improve delivery efficiency.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Drexler CI, Cyran JD, Webb LJ. Lipid-Specific Direct Translocation of the Cell-Penetrating Peptide NAF-1 44-67 across Bilayer Membranes. J Phys Chem B 2023; 127:2002-2010. [PMID: 36827970 PMCID: PMC10127249 DOI: 10.1021/acs.jpcb.2c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The cell-penetrating peptide NAF-1 has recently emerged as a promising candidate for selective penetration and destruction of cancer cells. It displays numerous membrane-selective behaviors including cell-specific uptake and organelle-specific degradation. In this work, we explore membrane penetration and translocation of NAF-1 in model lipid bilayer vesicles as a function of lipid identity in zwitterionic phosphatidylcholine lipids mixed with anionic phosphatidylserine, phosphatidylglycerol, and phosphatidic acid lipids. By monitoring the digestion of NAF-1 using the protease trypsin located inside but not outside the vesicles, we determined that the translocation of NAF-1 was significantly enhanced by the presence of phosphatidic acid in the membrane compared to the other three anionic or zwitterionic lipids. These findings were correlated to fluorescence measurements of dansyl-labeled NAF-1, which revealed whether noncovalent interactions between NAF-1 and the bilayer were most stable either at the membrane/solution interface or within the membrane interior. Phosphatidic acid promoted interactions with fatty acid tails, while phosphatidylcholine, phosphatidylserine, and phosphatidylglycerol stabilized interactions with polar lipid headgroups. Interfacial vibrational sum frequency spectroscopy experiments revealed that the phosphate moiety on phosphatidic acid headgroups was better hydrated than on the other three lipids, which helped to shuttle NAF-1 into the hydrophobic region. Our findings demonstrate that permeation does not depend on the net charge on phospholipid lipid headgroups in these model vesicles and suggest a model wherein NAF-1 crosses membranes selectively due to lipid-specific interactions at bilayer surfaces.
Collapse
Affiliation(s)
- Chad I Drexler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jenée D Cyran
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Lauren J Webb
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Chang L, Wu X, Ran K, Tian Y, Ouyang X, Liu H, Gou S, Zhang Y, Ni J. One New Acid-Activated Hybrid Anticancer Peptide by Coupling with a Desirable pH-Sensitive Anionic Partner Peptide. ACS OMEGA 2023; 8:7536-7545. [PMID: 36873017 PMCID: PMC9979329 DOI: 10.1021/acsomega.2c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor resources, and developing acid-activated ACPs as more effective and selective antitumor drugs would represent new progress in cancer therapy. In this study, we designed a new class of acid-activated hybrid peptides LK-LE by altering the charge shielding position of the anionic binding partner LE based on the cationic ACP LK and investigated their pH response, cytotoxic activity, and serum stability, in hoping to achieve a desirable acid-activatable ACP. As expected, the obtained hybrid peptides could be activated and exhibit a remarkable antitumor activity by rapid membrane disruption at acidic pH, whereas its killing activity could be alleviated at normal pH, showing a significant pH response compared with LK. Importantly, this study found that the peptide LK-LE3 with the charge shielding in the N-terminal of LK displayed notably low cytotoxicity and more stability, demonstrating that the position of charge masking is extremely important for the improvement of peptide toxicity and stability. In short, our work opens a new avenue to design promising acid-activated ACPs as potential targeting agents for cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kaixin Ran
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Tian
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Recent advances in selective and targeted drug/gene delivery systems using cell-penetrating peptides. Arch Pharm Res 2023; 46:18-34. [PMID: 36593377 PMCID: PMC9807432 DOI: 10.1007/s12272-022-01425-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Biological cell membranes are a natural barrier for living cells. In the last few decades, the cell membrane has been the main hurdle in the efficient delivery of bioactive and therapeutic agents. To increase the drug efficacy of these agents, additional mediators have been considered. Cell-penetrating peptides (CPPs), a series of oligopeptides composed of mostly hydrophobic and/or positively charged side chains, can increase the interaction with the cell membrane. CPP-based delivery platforms have shown great potential for the efficient and direct cytosol delivery of various cargos, including genes, proteins, and small molecule drugs. Bypassing endocytosis allows the CPP-based delivery systems greater defense against the degradation of protein-based drugs than other drug delivery systems. However, the delivery of CPPs exhibits intrinsically non-specific targeting, which limits their medical applications. To endow CPPs with specific targeting ability, the conjugation of pH-sensitive, enzyme-specific cleavable, and multiple targeting ligands has been reported. Optimization of the length and sequence of CPPs is still needed for various drugs of different sizes and surface charges. Toxicity issues in CPP-based delivery systems should be addressed carefully before clinical use.
Collapse
|
12
|
Wu H, Wei G, Luo L, Li L, Gao Y, Tan X, Wang S, Chang H, Liu Y, Wei Y, Song J, Zhang Z, Huo J. Ginsenoside Rg3 nanoparticles with permeation enhancing based chitosan derivatives were encapsulated with doxorubicin by thermosensitive hydrogel and anti-cancer evaluation of peritumoral hydrogel injection combined with PD-L1 antibody. Biomater Res 2022; 26:77. [PMID: 36494759 PMCID: PMC9733157 DOI: 10.1186/s40824-022-00329-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Combination of chemotherapy and immune checkpoint inhibitor therapy has greatly improved the anticancer effect on multiple malignancies. However, the efficiency on triple-negative breast cancer (TNBC) is limited, since most patients bear "cold" tumors with low tumor immunogenicity. Doxorubicin (DOX), one of the most effective chemotherapy agents, can induce immunogenic cell death (ICD) and thus initiating immune response. METHODS In this study, to maximize the ICD effect induced by DOX, chitosan and cell-penetrating peptide (R6F3)-modified nanoparticles (PNPs) loaded with ginsenoside Rg3 (Rg3) were fabricated using the self-assembly technique, followed by co-encapsulation with DOX based on thermo-sensitive hydrogel. Orthotopic tumor model and contralateral tumor model were established to observe the antitumor efficacy of the thermo-sensitive hydrogel combined with anti-PD-L1 immunotherapy, besides, the biocompatibility was also evaluated by histopathological. RESULTS Rg3-PNPs strengthened the immunogenic cell death (ICD) effect induced by DOX. Moreover, the hydrogel co-loading Rg3-PNPs and DOX provoked stronger immune response in originally nonimmunogenic 4T1 tumors than DOX monotherapy. Following combination with PD-L1 blocking, substantial antitumor effect was achieved due to the recruitment of memory T cells and the decline of adaptive PD-L1 enrichment. CONCLUSION The hydrogel encapsulating DOX and highly permeable Rg3-PNPs provided an efficient strategy for remodeling immunosuppressive tumor microenvironment and converting immune "cold" 4T1 into "hot" tumors.
Collapse
Affiliation(s)
- Hao Wu
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China ,grid.411671.40000 0004 1757 5070School of Material Science and Chemical Engineering, Chuzhou University, 239000 Chuzhou, China
| | - Guoli Wei
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China ,Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lixia Luo
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Lingchang Li
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Yibo Gao
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Xiaobin Tan
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Sen Wang
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Haoxiao Chang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxi Liu
- grid.411671.40000 0004 1757 5070School of Material Science and Chemical Engineering, Chuzhou University, 239000 Chuzhou, China
| | - Yingjie Wei
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Jie Song
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Zhenhai Zhang
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Jiege Huo
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China ,Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| |
Collapse
|
13
|
Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release 2022; 350:803-814. [PMID: 36087802 DOI: 10.1016/j.jconrel.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
Postsurgical treatment is of great importance to combat tumor recurrence and metastasis. Anti-CD47 antibodies (aCD47) can block the CD47-signal regulatory protein-alpha (CD47-SIRPα) pathway to restore immunity. Here, an in-situ gel implantation was engineered by crosslinking chitosan (CS) and pullulan (Pul) for postsurgical treatment. A highly selected chemotherapeutic, cyclopamine (Cyc), encapsulated in liposomes (Cyc-Lip) was co-loaded with aCD47 in gels for chemoimmunotherapy. Importantly, a sequential drug release kinetics can be achieved. Nanotherapeutics were confirmed to be released prior to aCD47 in a burst-release manner, which was benefit for immediately killing residual tumor cells followed by releasing tumor antigens. Meanwhile, aCD47 was released in a sustained-release manner to restore macrophage functions and exert anti-tumor immune responses. Afterwards, the efficacy of in-situ chemoimmunotherapy was confirmed on 4T1 mouse breast cancer models, which could not only efficiently augment anti-tumor effect to inhibit tumor recurrence but also establish a long-term immune memory to combat tumor metastasis.
Collapse
|
14
|
Cai M, Liang W, Wang K, Yin D, Fu T, Zhu R, Qu C, Dong X, Ni J, Yin X. Aperture Modulation of Isoreticular Metal Organic Frameworks for Targeted Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36366-36378. [PMID: 35897121 DOI: 10.1021/acsami.2c07450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of different pore diameters in metal organic frameworks (MOFs) could adjust their drug delivery performance. MOFs with customized structures have potential application value in targeted drug delivery. However, no research on this topic has been found so far. In this report, isoreticular metal organic frameworks (IRMOFs) have been taken as a typical case of tailor-made MOFs, the pore size of which is enlarged (average BJH pore sizes of about 2.43, 3.06, 5.47, and 6.50 nm were determined for IRMOF-1, IRMOF-8, IRMOF-10, and IRMOF-16, respectively), emphasizing the relationship between pore size and model drugs (Oridonin, ORI) and clarifying its potential working mechanism. IRMOF-1, whose pore size matches the size of ORI, has an outstanding drug loading capacity (57.93% by wt) and release profile (about 90% in 24 h at pH 7.4). IRMOF-1 was further coated with polyethylene glycol (PEG) modified with a cell penetrating peptide (CPP44) bound to M160 (CD163L1) protein for targeting of hepatic tumor lines. This nanoplatform (CPP44-PEG@ORI@IRMOF-1) exhibited acid-responsive drug release behavior (37.86% in 10 h at pH 7.4 and 66.66% in 10 h at pH 5.5) and significantly enhanced antitumor effects. The results of cell targeting and in vivo animal imaging indicated that CPP44-PEG@ORI@IRMOF-1 may serve as a tumor-selective drug delivery nanoplatform. Toxicity assessment confirmed that PEGylated IRMOF-1 did not cause organ or systemic toxicity. Furthermore, it is encouraging that the IRMOF-based targeted drug delivery system with pore size modulation showed rapid clearance (most administered NPs are metabolized from urine and feces within 1 week) and avoided accumulation in the body, indicating their promise for biomedical applications. This MOF-based aperture modulation combined with a targeted modification strategy might find broad applications in cancer theranostics. Thus, it is convenient to customize personalized MOFs according to the size of drug molecules in future research.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wulin Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
15
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
16
|
Liu C, Yao W, Zhou H, Chen H, Yu S, Qiao W. Series of High Magnetic Resonance-Guided Photoinduced Nanodelivery Systems for Precisely Improving the Efficiency of Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20616-20627. [PMID: 35471860 DOI: 10.1021/acsami.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive o-nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers in vivo, so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site. And the application potential of this strategy was verified with 88% tumor suppression effect in the 12NBGD-DOX+UV group. In addition, this paper emphasizes that small differences in structure can affect the overall performance of the carriers. By exploration of the differences in stability, drug loading, stimulus responsiveness, MRI imaging effect, and toxicity of the series of nNBGD carriers, the relationship between the length of the hydrophobic group of nNBGD lipids and the overall performance of the carriers is given, which provides experimental support and design reference for other carriers.
Collapse
Affiliation(s)
- Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
17
|
Zhang Y, Chang L, Bao H, Wu X, Liu H, Gou S, Zhang J, Ni J. Constructing New Acid-Activated Anticancer Peptide by Attaching a Desirable Anionic Binding Partner Peptide. J Drug Target 2022; 30:973-982. [PMID: 35502656 DOI: 10.1080/1061186x.2022.2070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Improving the cell selectivity of anticancer peptides (ACPs) is a major hurdle in their clinical utilization. In this study, a new acid-activated ACP was designed by conjugating a cationic ACP LK to its anionic binding partner peptide (LEH) via a disulfide linker to trigger antitumor activity at acidic pH while masking its killing activity at normal pH. Three anionic binding peptides containing different numbers of glutamic acid (Glu) and histidine were engineered to obtain an efficient acid-activated ACP. The conjugates LK-LEH2 and LK-LEH3 exhibited 6.1 and 8.0-fold higher killing activity at pH 6.0 relative to at pH 7.4, respectively, suggesting their excellent pH-dependent antitumor activity; and their cytotoxicity was 10-fold lower than that of LK. However, LK-LEH4 had no pH-responsive killing effect. Interestingly, increasing the number of Glu from 2 to 4 increased the pH-response of the physical mixture of LK and LEH; conversely, they weakly decreased the cytotoxicity of LK, suggesting that the conjugate connection was required to achieve excellent pH dependence while maintaining minimum toxicity. LK-LEH2 and LK-LEH3 were more enzymatically stable than LK, indicating their potential for in vivo application. Our work provided a basis for designing promising ACPs with good selectivity and low toxicity.
Collapse
Affiliation(s)
- Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hexin Bao
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyan Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingying Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
18
|
Hu J, He J, Wang Y, Zhao Y, Fang K, Dong Y, Chen Y, Zhang Y, Zhang C, Wang H, Tan J, Wang J, Zi R, Liu C, Liang H, Guo Y, Ou J. Ultrasound combined with nanobubbles promotes systemic anticancer immunity and augments anti-PD1 efficacy. J Immunother Cancer 2022; 10:jitc-2021-003408. [PMID: 35236741 PMCID: PMC8896049 DOI: 10.1136/jitc-2021-003408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The poor immunogenicity of solid tumors limits the efficacy ofanti-programmed cell death protein 1 (anti-PD1)-based immune checkpoint blockade (ICB); thus, less than 30% of patients with cancer exhibit a response. Currently, there is still a lack of effective strategies for improving tumor immunogenicity. METHODS The antitumor effect of ultrasound-stimulated nanobubbles (USNBs) alone and in combination with an anti-PD1 antibody was evaluated in RM1 (prostate cancer), MC38 (colon cancer) and B16 (melanoma) xenograft mouse models. The phenotypes of antigen-presenting cells and CD8+ T cells were evaluated by flow cytometry. Damage-associated molecular pattern (DAMP) release, antigen release and tumor cell necrosis were assessed via western blot, flow cytometry, transmission electron microscopy and confocal microscopy. RESULTS USNB promoted the infiltration and antitumor activity of CD8+ T cells. The combination of USNB and anti-PD1 blockade improved systemic antitumor immunity and resulted in an abscopal effect and long-term immune memory protection after complete tumor remission. Mechanistically, tumor-targeting USNB induced tumor cell necrosis through an ultrasound-mediated cavitation effect, which significantly increased DAMP release and tumor antigen presentation, consequently sensitizing tumors to ICB treatment. CONCLUSION The administration of USNB increased tumor immunogenicity by remodeling the tumor-immune microenvironment, providing a promising strategy for sensitizing poorly immunogenic solid tumors to immunotherapy in the clinic.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Oncology, Army Medical University, Chongqing, China
| | - Jiangyi He
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yunlong Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yang Zhao
- Department of Oncology, Army Medical University, Chongqing, China
| | - Kejing Fang
- Department of Ultrasound, Army Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yanrong Chen
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yue Zhang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Chi Zhang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Hongwei Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Jun Tan
- Department of Oncology, Army Medical University, Chongqing, China
| | - Junyi Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Ruiyang Zi
- Department of Oncology, Army Medical University, Chongqing, China
| | - Chengxiang Liu
- Department of Oncology, Army Medical University, Chongqing, China
| | - Houjie Liang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yanli Guo
- Department of Ultrasound, Army Medical University, Chongqing, China
| | - Juanjuan Ou
- Department of Oncology, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Hu Y, Julian McClements D, Li X, Chen L, Long J, Jiao A, Xie F, Wang J, Jin Z, Qiu C. Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chem 2022; 384:132429. [PMID: 35219238 DOI: 10.1016/j.foodchem.2022.132429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Artemisinin (Art) is a natural sesquiterpene lactone that is claimed to exhibit various bioactivities. The poor solubility of Art in both water and oil hinders its application in formulations intended for oral administration. In this study, we investigated the potential of forming a host-guest complex between Art and succinic acid modified cyclodextrin (SACD) to improve its solubility characteristics. Art-SACD inclusion complexes (2:1 M ratio) were successfully formed in water, which was attributed to the relatively large cavity size of SACD, as well as the intermolecular interactions between the Art and succinic acid branches in the cavity. The thermal stability of the Art was retained after incorporation into the Art-SACD complexes, which may be useful for applications such as pasteurization or cooking. The encapsulated Art showed antibacterial activity against both Gram-positive and Gram-negative bacteria. Such encapsulation technology allows Art to be introduced into oral delivery systems in a bioactive form.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Xie
- Shandong Zhushi Pharmaceutical Group Co., LTD, Heze 274300, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
21
|
Yu Y, Wu Z, Wu J, Shen X, Wu R, Zhou M, Li L, Huang Y. Investigation of FcRn‐Mediated Transepithelial Mechanisms for Oral Nanoparticle Delivery Systems. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhanghan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Jiawei Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Xinran Shen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ruinan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Minglu Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lian Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yuan Huang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
22
|
Jiang Y, Yin Z, Zhao J, Sun J, Zhao D, Zeng XA, Li H, Huang M, Wu J. Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food Chem Toxicol 2021; 155:112402. [PMID: 34246709 DOI: 10.1016/j.fct.2021.112402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Val-Asn-Pro (VNP) was identified from the raw material of baijiu distillation (Jiupei) and exhibit antioxidant activity in vitro. In this study, residue after baijiu distillation (Jiuzao) was used to seek the antioxidant peptide VNP with the methods reported inthe previous study. Its potential antioxidant mechanism in vivo was further assessed. Gene and protein expressions of Nrf2/Keap1-p38MAPK/PI3K-MafK signaling pathway and downstream enzymes (i.e., CAT, GPX1, SOD1, and HO-1) in AAPH-induced oxidative stress Sprague-Dawley (SD) rats were investigated. Influence of VNP on baijiu characteristics was also investigated. Based on the results, VNP was identified with a content of 5.25 mg/g Jiuzao. VNP significantly mitigated excess oxidative stress via activation of Nrf2/Keap1-p38MAPK/PI3K-MafK signaling pathway and activated downstream antioxidant enzymes. Furthermore, VNP showed unconspicuous influence on the flavor and taste of baijiu when added into baijiu and the content remained stable during storage. These results indicated that VNP is a potent antioxidant component isolated from Jiuzao that can be used in baijiu to enhance its antioxidant effect without affecting the main flavor and taste. The utilization of these functional components can also increase the added value of Jiuzao.
Collapse
Affiliation(s)
- Yunsong Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhongtian Yin
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100048, China
| | - Jiwen Zhao
- Technocal Center of Bandaojing Co.Ltd., Gaoqing, Shandong, 256300, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China.
| | - Dongrui Zhao
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100048, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Jihong Wu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
23
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
24
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. J Drug Target 2021; 30:46-60. [PMID: 33944641 DOI: 10.1080/1061186x.2021.1920026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of cell-penetrating peptides (CPP) in the 1980s, they have played a unique role in various fields owing to their excellent and unique cell membrane penetration function. In particular, in the treatment of tumours, CPPS have been used to deliver several types of 'cargos' to cancer cells. To address the insufficient targeting ability, non-selectivity, and blood instability, activatable cell-penetrating peptides, which can achieve targeted drug delivery in tumour treatment, enhance curative effects, and reduce toxicity have been developed. This study reviews the application of different cell-penetrating peptides in tumour-targeted delivery, overcoming multidrug resistance, organelle targeting, tumour imaging, and diagnosis, and summarises the different mechanisms of activatable cell-penetrating peptides in detail.
Collapse
Affiliation(s)
- Xinru Kong
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Jiangkang Xu
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Xiaoye Yang
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jianbo Ji
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Guangxi Zhai
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
26
|
Kesharwani P, Md S, Alhakamy NA, Hosny KM, Haque A. QbD Enabled Azacitidine Loaded Liposomal Nanoformulation and Its In Vitro Evaluation. Polymers (Basel) 2021; 13:250. [PMID: 33451016 PMCID: PMC7828524 DOI: 10.3390/polym13020250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Azacitidine (AZA), an inhibitor of DNA methyltransferase, is a commonly recognized drug used in clinical treatment for myelodysplastic syndrome and breast cancer. Due to higher aqueous solubility and negative log P of AZA causes poor cancer cell permeation and controlled release. The objective of the present study was to formulate and optimize AZA-loaded liposome (AZA-LIPO) for breast cancer chemotherapy by using Box Behnken design (BBD) and in vitro evaluation using MCF-7 cells. AZA-LIPO were prepared using a thin film hydration technique and characterization study was performed by using FTIR and DSC. The prepared formulations were optimized using BBD and the optimized formulation was further subjected for particle size, surface charges, polydispersity index (PDI), drug loading, entrapment efficiency, TEM, XRD, in-vitro drug release and hemolytic toxicity. The mean particle size of optimized AZA-LIPO was 127 nm. Entrapment efficiency and drug loading of AZA-LIPO was found to be 85.2% ± 0.5 and 6.82 ± 1.6%, respectively. Further, in vitro drug release study showed preliminary burst release in 2 h followed by a sustained release for 36 h in phosphate buffer at different pH (4.0, 5.5, and 7.4) as compared to free drug. Drug release was found to be pH dependent, as the pH was increased, the drug release rate was found to be low. Time-dependent cell viability assay exhibited significant higher cell viability and higher internalization than free AZA in MCF-7 cells. AZA-LIPO were more effective than the free AZA in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. The result showed that the formulated biocompatible AZA-LIPO nano-formulations may be used as an efficient anti-cancer drug delivery system for the treatment of breast cancer after establishing preclinical and clinical studies.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 16278, Saudi Arabia;
| |
Collapse
|