1
|
Yang C, Xia P, Zhao L, Wang K, Wang B, Huang R, Yang H, Yao Y. Hydrothermal carbonization of woody waste: Changes in the physicochemical properties and the structural evolution mechanisms of hydrochar during this process. CHEMOSPHERE 2024; 366:143524. [PMID: 39395478 DOI: 10.1016/j.chemosphere.2024.143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The Chinese medicine residue (CMR) is composed of wet woody waste, including licorice and ephedra, so using hydrothermal carbonization (HTC) to recover renewable energy from the CMR is a suitable treatment method. An in-depth analysis of the physicochemical properties and structural evolution mechanism of hydrochars is helpful in fundamentally promoting the energy utilization of traditional Chinese medicine waste residue. Therefore, this study analyzed the physicochemical properties and morphological structure of hydrochar produced under varying HTC conditions using multiple testing methods. The evolution of the hydrochar's structural characteristics can be categorized into three stages: component decomposition, structural rearrangement, and carbonization. During the component decomposition and carbonization stages, numerous nanoscale micropores form within the hydrochar. These micropores' specific surface area and pore volume can reach up to 113.420 m2/g and 0.01913 cm3/g, respectively. The highest fractal dimension values for D1 and D2 are 2.6354 and 2.5565, while the maximum values for the microcrystalline stacking height (Lc) and the average number of crystalline layers (Nave) are 0.3354 and 1.9968, respectively. Consequently, the hydrochar produced during these stages exhibits a rougher pore surface and a more complex structure, making it more suitable for adsorbing heavy metals from soil and sequestering CO2. During the structural rearrangement stage, the hydrochar exhibits higher contents of fixed carbon (FC), MgO, P2O5, and a higher C/N atomic ratio, with maximum values of 38.51%, 0.99%, 1.12%, and 28.49, respectively. Thus, the hydrochar produced during this stage is more suitable for soil remediation and nutrient recovery.
Collapse
Affiliation(s)
- Cong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Peng Xia
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Lingyun Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Unconventional Natural Gas Evaluation and Development in Complex Tectonic Areas, Ministry of Natural Resources, Guiyang, 550081, China; Guizhou Academy of Petroleum Exploration and Development Engineering, Guiyang, 550081, China
| | - Ke Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Rui Huang
- College of Electrical Engineering, Guizhou University, Guiyang, 550025, China
| | - Huan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuanzhu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Chandrasekar R, Deen MA, Narayanasamy S. Performance analysis of hydrochar derived from catalytic hydrothermal carbonization in the multicomponent emerging contaminant systems: Selectivity and modeling studies. BIORESOURCE TECHNOLOGY 2024; 393:130018. [PMID: 37989419 DOI: 10.1016/j.biortech.2023.130018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
In this work, as an alternative to pyrochar, catalytic hydrothermal carbonization has been employed to synthesize hydrochar to eliminate emerging contaminants in multicomponent systems. The hydrochar has been synthesized using a single step catalytic hydrothermal carbonization at low temperature (200 °C) without any secondary activation with high specific surface area and very good adsorption efficiency for the removal of emerging contaminants. The synthesized hydrochar (HC200) was characterized using various analytical techniques and found to have porous structure with 114.84 m2.g-1 of specific surface area and also contained various oxygen-containing functionalities. The maximum adsorption efficiencies of 92.4 %, 85.4 %, and 82 % were obtained for ibuprofen, sulfamethoxazole, and bisphenol A, respectively. Humic acid, a naturally occurring organic compound had a negligible effect on the adsorption of the selected contaminants. The hydrochar's selectivity towards the emerging contaminants in binary and ternary multicomponent systems was in the order of ibuprofen > sulfamethoxazole > bisphenol A.
Collapse
Affiliation(s)
- Ragavan Chandrasekar
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132690. [PMID: 37801977 DOI: 10.1016/j.jhazmat.2023.132690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Yan T, Zhang T, Wang S, Andrea K, Peng H, Yuan H, Zhu Z. Multivariate and multi-interface insights into carbon and energy recovery and conversion characteristics of hydrothermal carbonization of biomass waste from duck farm. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:154-165. [PMID: 37582310 DOI: 10.1016/j.wasman.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
High lipid, high nitrogen duck manure (DM) with high lipid, high lignocellulosic litter materials (LM) are the main wet biomass wastes from duck farms and both are naturally abundant carbon resources. The synthesis of duck farming biomass waste into carbon-rich materials for high value utilization by hydrothermal carbonization (HTC), which can directly treat wet biomass, has not been investigated. In this study, the physicochemical properties of hydrochar derived from co-HTC of DM and LM and its carbon and energy recovery patterns were systematically investigated under multivariate conditions of raw materials ratios, solids contents, temperatures and residence times. The application of synchrotron-based near-edge X-ray adsorption fine structure technique (C K-edge NEXAFS) combined with gas chromatography-mass spectrometry (GC-MS) to the hydrochar and hydrothermal liquid, respectively. At multiple interfaces provided an in-depth analysis of the important material transformations of the co-HTC process and the structure of the hydrochar. Extending residence time (180 min) and increasing LM ratio (M@4%) in co-HTC reaction of DM and LM is beneficial to achieve hydrochar containing higher carbon content (44.84%) at lower reaction temperatures (180 °C). The heating value (HHV) of the hydrochar ranges between 17.12 and 25.05 MJ/kg. The carbon recovery rate of the co-HTC of DM and LM all exceeded 55% and was more closely related to the carbon content of the hydrochar than to its yield. Additionally, the model ERR=0.97±0.01CRR+2.40±0.71 (R2 = 0.99, P < 0.01) was developed to predict energy recovery rate (ERR) based on carbon recovery rate (CRR). Esters were an important intermediate during co-HTC of DM and LM, and the derived hydrochar consisted of a wide range of polycyclic aromatic hydrocarbons, alkanes and N-aromatic heterocycles as well as polyfuran, pyrrole and pyridine structures.
Collapse
Affiliation(s)
- Ting Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kruse Andrea
- Institute of Agricultural Engineering, Conversion Technologies of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany
| | - Hua Peng
- Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haihang Yuan
- Tianjin Agricultural College, Tianjin 300000, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Seraj S, Azargohar R, Borugadda VB, Dalai AK. Energy recovery from agro-forest wastes through hydrothermal carbonization coupled with hydrothermal Co-gasification: Effects of succinic acid on hydrochars and H 2 production. CHEMOSPHERE 2023:139390. [PMID: 37402427 DOI: 10.1016/j.chemosphere.2023.139390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
Aiming to upgrade agro-forest wastes into value-added solid and gaseous fuels in the present investigation, hydrothermal carbonization (HTC) of spruce (SP), canola hull (CH), and canola meal (CM) was optimized in terms of operating conditions, maximizing the higher heating value of hydrochars. The optimal operating conditions were achieved at HTC temperature, reaction time, and solid-to-liquid ratio of 260 °C, 60 min, and 0.2 g mL-1, respectively. At the optimum condition, succinic acid (0.05-0.1 M) was used as HTC reaction medium to investigate the effects of acidic medium on the fuel characteristics of hydrochars. The succinic acid assisted HTC was found to eliminate ash-forming minerals e.g., K, Mg, and Ca from hydrochar backbones. The calorific values, H/C and O/C atomic ratios of hydrochars were in the range of 27.6-29.8 MJ kg-1, 0.8-1.1, and 0.1-0.2, respectively, indicating the biomass upgrading into coal-like solid fuels. Finally, hydrothermal gasification of hydrochars with their corresponding HTC aqueous phase (HTC-AP) was assessed. Gasification of CM resulted in a relatively high H2 yield of 4.9-5.5 mol kg-1 followed by that for SP with 4.0-4.6 mol H2 per kg of hydrochars. Results suggest that hydrochars and HTC-AP have a great potential for H2 production via hydrothermal co-gasification, while suggesting HTC-AP reuse.
Collapse
Affiliation(s)
- Somaye Seraj
- Department of Chemical & Biological Engineering, University of Saskatchewan, Canada
| | - Ramin Azargohar
- Department of Process Engineering, Memorial University of Newfoundland, Canada
| | - Venu Babu Borugadda
- Department of Chemical & Biological Engineering, University of Saskatchewan, Canada
| | - Ajay K Dalai
- Department of Chemical & Biological Engineering, University of Saskatchewan, Canada.
| |
Collapse
|
6
|
Han X, Wang Z, Lu N, Tang J, Lu P, Zhu K, Guan J, Feike T. Comprehensive study on the hydrochar for adsorption of Cd(II): preparation, characterization, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64221-64232. [PMID: 37061638 DOI: 10.1007/s11356-023-26956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Hydrothermal carbonization process via converting invasive plants into functional materials may provide a novel strategy to comprehensively control and utilized the exotic invasive plants. In this study, Eupatorium adenophorum was utilized to fabricate the hydrochar via hydrothermal carbonization process, which was further applied to remove Cd(II). The results showed that the hydrochar was a mesoporous material with abundant O-containing functional groups (OFPs) on the surface. The adsorption isotherms were fitted by both the Langmuir and Freundlich models, and the maximum adsorption amount achieved 24.53 mg/g. The adsorption dynamics were governed by surface adsorption and film diffusion. pH and ionic strength can exert a strong influence on the adsorption efficiency. The mechanisms on the adsorption of Cd(II) on the hydrochar concluded the pore-filling effects, electrostatic interactions, ion exchange, precipitation, coordination with π electrons, and surface complexation with the OFPs, such as hydroxyl, carboxylic, phenol, acetyl, and ester groups. Thus, hydrothermal carbonization process may provide a promising technique to fabricate the hydrocar for the treatment of Cd(II), which may facilitate comprehensive control of invasive plants and boost to the carbon neutrality.
Collapse
Affiliation(s)
- Xu Han
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Jiaqing Tang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Ping Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ke Zhu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, 250000, People's Republic of China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China.
| | - Til Feike
- Federal Research Centre for Cultivated Plants, Inst. for Strategies and Technology Assessment, Julius Kühn-Institut, 14532, Kleinmachnow, Germany
| |
Collapse
|
7
|
Periyavaram SR, Uppala L, Sivaprakash S, Reddy PHP. Thermal behaviour of hydrochar derived from hydrothermal carbonization of food waste using leachate as moisture source: Kinetic and thermodynamic analysis. BIORESOURCE TECHNOLOGY 2023; 373:128734. [PMID: 36791981 DOI: 10.1016/j.biortech.2023.128734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The effect of leachate (L) as a reaction medium in hydrothermal carbonization (HTC) of food waste (FW) on the thermal behaviour of the resulting hydrochar (H) was investigated. The physicochemical and structural characterization of FW hydrochar produced using leachate (FWH-L) at different process temperatures (180/210/240 °C) confirmed the improved properties over raw FW. Kinetic analysis using Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman methods revealed that FWH-L have a lower activation energy (Ea) than raw FW. The average Ea values for raw FW by FWO, KAS and Friedman methods were 196.18, 196.85, 206.34 kJ/mol, respectively, while for FWH-L they were 127.89, 124.22 and 134.5 kJ/mol, respectively. The computed thermodynamic parameters showed that FWH-L has improved combustion behaviour. The results of FWH-L are well comparable to FW hydrochar produced using distilled water (FWH-DW). These findings demonstrated that residual ions in leachate would act as a catalyst, benefiting the HTC degradation reaction path.
Collapse
Affiliation(s)
| | - Lavakumar Uppala
- Department of Civil Engineering, National Institute of Technology, Warangal, India
| | | | - P Hari Prasad Reddy
- Department of Civil Engineering, National Institute of Technology, Warangal, India.
| |
Collapse
|
8
|
Wang Z, Lu N, Cao X, Li Q, Gong S, Lu P, Zhu K, Guan J, Feike T. Interactions between Cr(VI) and the hydrochar: The electron transfer routes, adsorption mechanisms, and the accelerating effects of wood vinegar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160957. [PMID: 36528950 DOI: 10.1016/j.scitotenv.2022.160957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Conversion of the low-valued invasive plant biomass into high-grade carbonaceous materials may provide a novel strategy to tackle the global issues of climate changes and exotic plant invasion. In this study, the hydrochar was fabricated from the biomass of Eupatorium adenophorum spreng. via hydrothermal carbonization (HTC) process to remove Cr(VI). The adsorption thermodynamics and kinetics were investigated via batch experiments, and the electron transfer routes and adsorption mechanisms were further revealed based on systematic characterization. The adsorption isotherms were well fitted by the Langmuir model with a maximum adsorption amount of 7.76 mg/g. The adsorption was spontaneous, and the surface adsorption and intraparticle diffusion may be the speed-limiting steps. Both -OH group and furan structures may donate the electrons to reduce Cr(VI), and the adsorption was governed by the surface complexation with the oxygen-containing functional groups including hydroxyl and carboxyl. Furthermore, the wood vinegar, as the by-product, can significantly accelerate the reduction rate of Cr(VI). Thus, this study provided a new strategy to fabricate carbonaceous materials which may facilitate to boost the carbon neutrality and control of invasive plants.
Collapse
Affiliation(s)
- Zirui Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qingzi Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shangyu Gong
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Ping Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ke Zhu
- School of Thermal Engineering, Shandong Jianzhu University, Fengming Road 1000, 250000, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Til Feike
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Inst. for Strategies and Technology Assessment, 14532 Kleinmachnow, Germany
| |
Collapse
|
9
|
Enhanced electrocatalytic performance of 2D Ni-MOF for ethanol oxidation reaction by loading carbon dots. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Liu J, Zhu Y, Cai J, Zhong Y, Han T, Chen Z, Li J. Encapsulating Metal-Organic-Framework Derived Nanocages into a Microcapsule for Shuttle Effect-Suppressive Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:236. [PMID: 35055255 PMCID: PMC8777985 DOI: 10.3390/nano12020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Long-term stable secondary batteries are highly required. Here, we report a unique microcapsule encapsulated with metal organic frameworks (MOFs)-derived Co3O4 nanocages for a Li-S battery, which displays good lithium-storage properties. ZIF-67 dodecahedra are prepared at room temperature then converted to porous Co3O4 nanocages, which are infilled into microcapsules through a microfluidic technique. After loading sulfur, the Co3O4/S-infilled microcapsules are obtained, which display a specific capacity of 935 mAh g-1 after 200 cycles at 0.5C in Li-S batteries. A Coulombic efficiency of about 100% is achieved. The constructed Li-S battery possesses a high rate-performance during three rounds of cycling. Moreover, stable performance is verified under both high and low temperatures of 50 °C and -10 °C. Density functional theory calculations show that the Co3O4 dodecahedra display large binding energies with polysulfides, which are able to suppress shuttle effect of polysulfides and enable a stable electrochemical performance.
Collapse
Affiliation(s)
- Jinyun Liu
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Yajun Zhu
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Junfei Cai
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yan Zhong
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Tianli Han
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Zhonghua Chen
- Shenzhen FBTech Electronics Ltd., Shenzhen 518100, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
11
|
Liu J, Zhong Y, Li X, Ying T, Han T, Li J. A novel rose-with-thorn ternary MoS 2@carbon@polyaniline nanocomposite as a rechargeable magnesium battery cathode displaying stable capacity and low-temperature performance. NANOSCALE ADVANCES 2021; 3:5576-5580. [PMID: 36133263 PMCID: PMC9417848 DOI: 10.1039/d1na00445j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 05/16/2023]
Abstract
Developing high-performance cathode materials for magnesium (Mg) batteries is of great significance. Here, a novel rose-with-thorn ternary MoS2@C@polyaniline (PANI) nanocomposite composed of carbon and PANI nanoneedles co-coated on rose-like MoS2 is developed. The conductive PANI needles on the surface of MoS2 improve the conductivity, and the inner MoS2 is wrapped by a carbon layer which is beneficial for the aniline coating. The MoS2@C@PANI-based Mg battery cathode displays a good capacity of 114 mA h g-1 after 100 cycles, and a recoverable rate-performance after repeated measurements. In addition, a stable capacity of 105 mA h g-1 when cycled at a low temperature of -5 °C is also achieved, indicating good potential for applications.
Collapse
Affiliation(s)
- Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Yan Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Xuelian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Tongxin Ying
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|