1
|
Nayak BP, Kim HJ, Nayak S, Wang W, Bu W, Mallapragada SK, Vaknin D. Assembling PNIPAM-Capped Gold Nanoparticles in Aqueous Solutions. ACS Macro Lett 2023; 12:1659-1664. [PMID: 37991797 DOI: 10.1021/acsmacrolett.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Employing small-angle X-ray scattering (SAXS), we explore the conditions under which assembly of gold nanoparticles (AuNPs) grafted with the thermosensitive polymer poly(N-isopropylacrylamide) (PNIPAM) emerges. We find that short-range order assembly emerges by combining the addition of electrolytes or polyelectrolytes with raising the temperature of the suspensions above the lower-critical solution temperature (LCST) of PNIPAM. Our results show that the longer the PNIPAM chain is, the better organization in the assembled clusters. Interestingly, without added electrolytes, there is no evidence of AuNPs assembly as a function of temperature, although untethered PNIPAM is known to undergo a coil-to-globule transition above its LCST. This study demonstrates another approach to assembling potential thermosensitive nanostructures for devices by leveraging the unique properties of PNIPAM.
Collapse
Affiliation(s)
- Binay P Nayak
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hyeong Jin Kim
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Srikanth Nayak
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames National Laboratory, U.S. DOE, Ames, Iowa 50011, United States
| | - Wei Bu
- NSFs ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Surya K Mallapragada
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Vaknin
- Ames National Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Kim HJ, Nayak BP, Zhang H, Ocko BM, Travesset A, Vaknin D, Mallapragada SK, Wang W. Two-dimensional assembly of gold nanoparticles grafted with charged-end-group polymers. J Colloid Interface Sci 2023; 650:1941-1948. [PMID: 37517193 DOI: 10.1016/j.jcis.2023.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
HYPOTHESIS Introducing charged terminal groups to polymers that graft nanoparticles enable Coulombic control over their assembly by tuning the pH and salinity of their aqueous suspensions. EXPERIMENTS Gold nanoparticles (AuNPs) are grafted with poly (ethylene glycol) (PEG) terminated with (charge-neutral), (negatively charged) or groups (positively charged), and characterized with dynamic light scattering, ζ-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) are used to determine the density profile and in-plane structure of the AuNPs assembly at the aqueous surface. FINDINGS Assembly of PEG-AuNPs at the liquid/vapor interface is tunable by adjusting pH or salinity for COOH but less for terminals. The distinct assembly behaviors are attributed to the overall charge of PEG-AuNPs as well as PEG conformation. COOH-PEG corona is more compact than those of the other terminal groups, leading to a crystalline structure with a smaller superlattice. The net charge per particle depends not only on the PEG terminal groups but also on the cation sequestration of PEG and the intrinsic negative charge of the AuNP surface. [1] The closeness to overall charge neutrality, and hydrogen bonding in play, brought by -PEG, drive -PEG-AuNPs to assembly and crystallinity without additives to the suspensions.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Binay P Nayak
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials and NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Alex Travesset
- Ames National Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, United States
| | - David Vaknin
- Ames National Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames National Laboratory, U.S. DOE, Ames, IA 50011, United States.
| |
Collapse
|
3
|
Rasouli S, Hashemianzadeh SM, Moghbeli MR. Role of physicochemical characteristics of poly(N,N-diethylacrylamide) on the polymer thermal responsivity and interfacial properties in aqueous solution: All-atom simulation study. J Mol Graph Model 2022; 112:108140. [DOI: 10.1016/j.jmgm.2022.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
|
4
|
Kim HJ, Wang W, Zhang H, Freychet G, Ocko BM, Travesset A, Mallapragada SK, Vaknin D. Binary Superlattices of Gold Nanoparticles in Two Dimensions. J Phys Chem Lett 2022; 13:3424-3430. [PMID: 35411773 DOI: 10.1021/acs.jpclett.2c00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have created two-dimensional (2D) binary superlattices by cocrystallizing gold nanoparticles (AuNPs) of two distinct sizes into √3 × √3 and 2 × 2 complex binary superlattices, derived from the hexagonal structures of the single components. The building blocks of these binary systems are AuNPs that are functionalized with different chain lengths of poly(ethylene glycol) (PEG). The assembly of these functionalized NPs at the air-water interface is driven by the presence of salt, causing PEG-AuNPs to migrate to the aqueous surface and assemble into a crystalline lattice. We have used liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) to examine the assembly and crystallization at the liquid interface.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Ames Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE, Ames, Iowa 50011, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guillaume Freychet
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex Travesset
- Ames Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Surya K Mallapragada
- Ames Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Vaknin
- Ames Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Gao Y, Zhou Y, Xu X, Chen C, Xiong B, Zhu J. Fabrication of Oriented Colloidal Crystals from Capillary Assembly of Polymer-Tethered Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106880. [PMID: 35146905 DOI: 10.1002/smll.202106880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Self-assembled colloidal crystals (CCs) or nanoparticle (NPs) superlattices have attracted significant attention due to their potential applications in many fields. However, due to the complex interactions that govern the self-assembly, it is difficult to predict and control the superstructure organization of CCs. Herein, a facile yet effective way is demonstrated to fabricate oriented CCs from capillary assembly of polymer-tethered gold NPs (AuNPs). Assembly mechanism of polymer-tethered AuNPs and their superlattice structures are systematically studied by in situ small-angle X-ray scattering (SAXS) technology. The results show that the oriented CCs of polymer-tethered AuNPs can be obtained upon solvent evaporation in a capillary tube and the oriented structure is mainly determined by the chain length of polymer ligands and size of AuNPs. Assembly of AuNPs tethered by short-chain ligand can result in oriented face-centered cubic (fcc) superlattice, whereas AuNPs tethered by long-chain ligand can assemble into an oriented body-centered tetragonal (bct) superlattice structure. Interestingly, in situ SAXS study shows that for the sample of bct superlattice structure, a transformation from fcc to bct superlattice upon solvent evaporation is observed, which strongly depends on chain length of ligands. This work provides a useful guide for polymer-tethered AuNPs to prepare orientation colloidal crystals.
Collapse
Affiliation(s)
- Yutong Gao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Youshuang Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangyun Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chungui Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bijin Xiong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
6
|
Kim HJ, Wang W, Zhang H, Freychet G, Ocko BM, Travesset A, Mallapragada SK, Vaknin D. Effect of Polymer Chain Length on the Superlattice Assembly of Functionalized Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10143-10149. [PMID: 34370486 DOI: 10.1021/acs.langmuir.1c01547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the assembly of gold nanoparticle (AuNPs) superlattices at the liquid/vapor interface and in the bulk of their suspensions. Interparticle distances in the assemblies are achieved on multiple length scales by varying chain lengths of surface grafted AuNPs by polyethylene glycol (PEG) with molecular weights in the range 2000-40,000 Da. Crystal structures and lattice constants in both 2D and 3D assemblies are determined by synchrotron-based surface-sensitive and small-angle X-ray scattering. Assuming knowledge of grafting density, we show that experimentally determined interparticle distances are adequately modeled by spherical brushes close to the θ point (Flory-Huggins parameter, χ≈12) for 2D superlattices at a liquid interface and a nonsolvent (χ = ∞) for the 3D dry superlattices.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Ames Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE, Ames, Iowa 50011, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guillaume Freychet
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex Travesset
- Ames Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Surya K Mallapragada
- Ames Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Vaknin
- Ames Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|