1
|
Zhang J, Tang Y, Gao X, Pei X, Weng Y, Chen J. Preparation of Time-Sequential Functionalized ZnS-ZnO Film for Modulation of Interfacial Behavior of Metals in Biological Service Environments. Biomolecules 2024; 14:1041. [PMID: 39199426 PMCID: PMC11352253 DOI: 10.3390/biom14081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Blood-contact devices are prone to inflammation, endothelial dysfunction, coagulation, and the uncontrolled release of metal ions during implantation and service. Therefore, it is essential to make these multifunctional. Herein, a superhydrophobic DE@ZnS-ZnO@SA film (composed of dabigatran ester, zinc sulfite, zinc oxide, and stearic acid, respectively) is produced. The prepared film has non-adhesion and antibacterial properties, superior mechanical stability, durability, corrosion resistance, and is self-cleaning and blood-repellent. The results of the hemolysis, cytotoxicity, and other anticoagulant experiments revealed that the film had good blood compatibility, no cytotoxicity, and excellent anticoagulant properties. The film displays anticoagulant properties even after being immersed in Phosphate-Buffered Saline (PBS) for 7 days. Furthermore, the film can spontaneously release H2S gas for 90 h after soaking in an acidic environment (pH = 6) for 90 h. This property improves the acidic microenvironment of the lesion and promotes the proliferation of endothelial cells by using H2S gas. In addition, the film can inhibit the uncontrollable release of Zn2+ ions, avoiding its toxicity even when immersed in an acid environment for 35 days. This time-sequential functionalized surface has the potential to typify the future of blood-contacting scaffolds for long-lasting use.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yujie Tang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xinyu Pei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China;
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| |
Collapse
|
2
|
Zhao Q, Yang Y, Xiong G, Chen J, Xu T, Xu Q, Zhang R, Yao W, Li H, Lee CS. Calcium Single Atom Confined in Nitrogen-Doped Carbon-Coupled Polyvinylidene Fluoride Membrane for High-Performance Piezocatalysis. J Am Chem Soc 2024. [PMID: 38853354 DOI: 10.1021/jacs.4c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A piezoelectric polymer membrane based on single metal atoms was demonstrated to be effective by anchoring isolated calcium (Ca) atoms on a composite of nitrogen-doped carbon and polyvinylidene fluoride (PVDF). The addition of Ca-atom-anchored carbon nanoparticles not only promotes the formation of the β phase (from 29.8 to 56.3%), the most piezoelectrically active phase, in PVDF, but also introduces much higher porosity and hydrophilicity. Under ultrasonic excitation, the fabricated catalyst membrane demonstrates a record-high and stable dye decomposing rate of 0.11 min-1 and antibacterial efficiencies of 99.8%. Density functional theory calculations reveal that the primary contribution to catalytic activity arises from single-atom Ca doping and that a possible synergistic effect between PVDF and Ca atoms can improve the catalytic performance. It is shown that O2 molecules can be easily hydrogenated to produce ·OH on Ca-PVDF, and the local electric field provided by the β-phase-PVDF might enhance the production of ·O2-. The proposed polymer membrane is expected to inspire the rational design of piezocatalysts and pave the way for the application of piezocatalysis technology for practical environmental remediation.
Collapse
Affiliation(s)
- Qi Zhao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Yuewen Yang
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Guanghui Xiong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Jianwei Chen
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China
| | - Tao Xu
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, P. R. China
- Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, P. R. China
- Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Hexing Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
3
|
Khan I, Al Alwan B, Jery AE, Khan S, Shayan M. Engineering MPC-Assisted Heterojunctional Photo-Oxidation Tailored by Interfacial Design of a P-Modulated C 3N 4 Heterojunction for Improved Aerobic Alcohol Oxidation. Inorg Chem 2024; 63:7019-7033. [PMID: 38557101 DOI: 10.1021/acs.inorgchem.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The creation of two-dimensional van der Waals (VDW) heterostructures is a sophisticated approach to enhancing photocatalytic efficiency. However, challenges in electron transfer at the interfaces often arise in these heterostructures due to the varied structures and energy barriers of the components involved. This study presents a novel method for constructing a VDW heterostructure by inserting a phosphate group between copper phthalocyanine (CuPc) and boron-doped, nitrogen-deficient graphitic carbon nitride (BCN), referred to as Cu/PO4-BCN. This phosphate group serves as a charge mediator, enabling effective charge transfer within the heterostructure, thus facilitating electron flow from BCN to CuPc upon activation. As a result, the photogenerated electrons are effectively utilized by the catalytic Cu2+ core in CuPc, achieving a conversion efficiency of 96% for benzyl alcohol (BA) and a selectivity of 98.8% for benzyl aldehyde (BAD) in the presence of oxygen as the sole oxidant and under illumination. Notably, the production rate of BAD is almost 8 times higher than that observed with BCN alone and remains stable over five cycles. The introduction of interfacial mediators to enhance electron transfer represents a pioneering and efficient strategy in the design of photocatalysts, enabling the proficient transformation of BA into valuable derivatives.
Collapse
Affiliation(s)
- Imran Khan
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Basem Al Alwan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | - Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Higher Institute of Applied Biology of Medenine, University of Gabes, Route El Jorf-Km 22 5, Medenine 4119, Tunisia
| | - Salman Khan
- Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Harbin 150080, P. R. China
| | - Muhammad Shayan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| |
Collapse
|
4
|
Liu L, Wang L, Sun D, Sun X, Liu L, Zhao W, Tayebee R, Liu B. ZnO-ZnS Heterostructure as a Potent Photocatalyst in the Preparation of Some Substituted Chromenes and Remarkable Antigastrointestinal Cancer Activity. ACS OMEGA 2023; 8:44276-44286. [PMID: 38027383 PMCID: PMC10666261 DOI: 10.1021/acsomega.3c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
The nanosized hybrid material ZnO-ZnS was synthesized using the well-known sol-gel method, as a simple and environmentally friendly procedure. The material was then characterized using various techniques including FESEM, TEM, UV-vis, DRS, EDS, XRD, and FT-IR. The characterization studies revealed the generation of ZnO-ZnS nanoparticles with a mean size of around 25 nm. Moreover, DRS analysis provided a band gap of 3.05 eV for this nanomaterial. The photocatalytic properties of the ZnO-ZnS heterojunction was investigated in the synthesis of some substituted chromenes under mild reaction conditions. The results showed that the prepared nanophotocatalyst exhibits significantly higher activity compared to its individual components (ZnO and ZnS) and provides 73-87% yield with 0.01 g of ZnO-ZnS after 30 min. In addition, the nanophotocatalyst demonstrated a high reusability in the desired condensation reaction. The enhanced photocatalytic activity of ZnO-ZnS can be attributed to the slower recombination of the electron-hole pairs in this semiconductor material. The reactive species OH•, •O2-, and h+ are believed to play important roles in the photocatalytic system. Furthermore, cellular toxicity of ZnO-ZnS nanoparticles was evaluated on HCT-116 human gastrointestinal cancer cell line by MTT assay. The results proved a distinct reduction of cell viability, proofing cytotoxicity of nanoparticles on the cancer cells. This study highlights the potential of the nanoparticles against gastrointestinal cancer.
Collapse
Affiliation(s)
- Liqing Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Longgang Wang
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Dong Sun
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Xu Sun
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Luguang Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Weizhu Zhao
- Department
of Oncology, Binzhou People’s Hospital
affiliated to Shandong First Medical University, Binzhou 256600, Shandong China
| | - Reza Tayebee
- Department
of Chemistry, School of Sciences, Hakim
Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Bing Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| |
Collapse
|
5
|
Yang Z, Peng X, Zheng J, Wang Z. Plasma synthesis of oxygen vacancy-rich CuO/Cu 2(OH) 3NO 3 heterostructure nanosheets for boosting degradation performance. Phys Chem Chem Phys 2023; 25:29108-29119. [PMID: 37869910 DOI: 10.1039/d3cp03918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu2(OH)3NO3 was achieved by fixing nitrogen in air as NO3- using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu2(OH)3NO3 nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu2(OH)3NO3 structure. CuO/Cu2(OH)3NO3 using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu2(OH)3NO3 using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O2- and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.
Collapse
Affiliation(s)
- Zikun Yang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Xiangfeng Peng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, China.
| |
Collapse
|
6
|
Yang B, Wang W, Hu Z, Shen B, Guo SQ. Vacancy pairs regulate BiOBr microstructure for efficient dimethyl phthalate removal under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132008. [PMID: 37423133 DOI: 10.1016/j.jhazmat.2023.132008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Developing new photocatalysts to achieve efficient removal of phthalate esters (PAEs) in water is an important research task in environmental science. However, existing modification strategies for photocatalysts often focus on enhancing the efficiency of material photogenerated charge separation, neglecting the degradation characteristics of PAEs. In this work, we proposed an effective strategy for the photodegradation process of PAEs: introducing vacancy pair defects. We developed a BiOBr photocatalyst containing "Bi-Br" vacancy pairs, and confirmed that it has an excellent photocatalytic activity in removing phthalate esters (PAEs). Through a combination of experimental and theoretical calculations, it is proved that "Bi-Br" vacancy pairs can not only improve the charge separation efficiency, but also alter the adsorption configuration of O2, thus accelerating the formation and transformation of reactive oxygen species. Moreover, "Bi-Br" vacancy pairs can effectively improve the adsorption and activation of PAEs on the surface of samples, surpassing the effect of O vacancies. This work enriches the design concept of constructing highly active photocatalysts based on defect engineering, and provides a new idea for the treatment of PAEs in water.
Collapse
Affiliation(s)
- Bo Yang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Wenjing Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
7
|
Apostolescu N, Tataru Farmus RE, Harja M, Vizitiu MA, Cernatescu C, Cobzaru C, Apostolescu GA. Photocatalytic Removal of Antibiotics from Wastewater Using the CeO 2/ZnO Heterojunction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:850. [PMID: 36676586 PMCID: PMC9866605 DOI: 10.3390/ma16020850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
CeO2/ZnO-based photocatalytic materials were synthesized by the sol-gel method in order to establish heterojunctions that increase the degradation efficiency of some types of antibiotics by preventing the recombination of electron-hole pairs. The synthesized materials were analysed by XRD, SEM, EDAX, FTIR, and UV-Vis. After several tests, the optimal concentration of the catalyst was determined to be 0.05 g‧L-1 and 0.025 g‧L-1 for chlortetracycline and 0.05 g‧L-1 for ceftriaxone. CeO2/ZnO assemblies showed much better degradation efficiency compared to ZnO or CeO2 tested individually. Sample S3 shows good photocatalytic properties for the elimination of ceftriaxone and tetracycline both from single solutions and from the binary solution. This work provides a different perspective to identify other powerful and inexpensive photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Maria Harja
- Correspondence: (M.H.); (G.A.A.); Tel.: +407-4790-9645 (M.H.); +407-542-4231 (G.A.A.)
| | | | | | | | | |
Collapse
|
8
|
V V, Alsawalha M, Alomayri T, Allehyani S, Hu YB, Fu ML, Yuan B. MWCNT supported V 2O 5 quantum dot nanoparticles decorated Bi 2O 3 nanosheets hybrid system: Efficient visible light driven photocatalyst for degradation of ciprofloxacin. CHEMOSPHERE 2022; 306:135505. [PMID: 35779680 DOI: 10.1016/j.chemosphere.2022.135505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
A novel composite of multiwall carbon nanotube (MWCNT) supported V2O5 quantum dots decorated Bi2O3 hybrid was prepared by the simple wet-impregnation method, and the photocatalytic performance of the prepared samples was investigated against the photodegradation of ciprofloxacin (CIP). Herein, different samples of pristine, V2O5/Bi2O3 and MWCNT@V2O5/Bi2O3 hybrid photocatalyst were prepared and systematically characterized by various physicochemical techniques. The characterization results demonstrated that the introduction of MWCNT can change the energy band gap of V2O5/Bi2O3, and the band energies vary with a constituent of MWCNT@V2O5/Bi2O3 catalyst, in which MWCNT@V2O5/Bi2O3-5 (0.05 g@0.50 g:0.50 g) has the optimal band gap energy of 2.46 eV. The photocatalytic test demonstrates that the MWCNT@V2O5/Bi2O3-5 hybrid composites exhibited enhanced photocatalytic activity in CIP degradation compared to that pure and other photocatalyst and its degradation efficiency did not decrease significantly even after five cyclic experiments. The enhanced photocatalytic activity was due to the formation of heterojunction among MWCNT, V2O5 and Bi2O3, which distinctly improved the separation efficiency of the photogenerated charge carrier, thus increasing the degradation performance. This work gives a new approach to designing an efficient photocatalyst for contaminants degradation.
Collapse
Affiliation(s)
- Vasanthakumar V
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Murad Alsawalha
- Department of Chemical Engineering, Industrial Chemistry Division, Jubail Industrial College, P.O. Box 10099, Jubail, 31961, Saudi Arabia
| | - Thamer Alomayri
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Saud Allehyani
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
9
|
Alsaggaf WT, Shawky A, Mahmoud M. S-scheme CuO/ZnO p-n heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wang X, Wei W, Zheng D, Chen Z, Dai H. Folic acid-functionalized L-cys/ZnS:O nanoparticles for homologous targeting and photodynamic therapy of tumor cells. J Mater Chem B 2022; 10:6001-6008. [PMID: 35880798 DOI: 10.1039/d2tb00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of photodynamic therapy (PDT) and fluorescence imaging provides a promising approach to theranostics. However, traditional photosensitizers (PSs) have low water solubility and lack active targeting ability. Our ingenious design used L-cys/ZnS:O (LZS) nanoparticles (NPs) modified with folic acid (FA), allowing them to easily enter tumor cells and accurately gather around the nucleus of cancer cells. L-Cysteine were used as intermediates, ZnS:O quantum dots and FA could be connected by a solid-state method and a coupling reaction. In doing so, the cytotoxicity of LZS NPs was further reduced, while the hydrophilicity and dispersibility were improved. Moreover, the as-synthesized FA@LZS NPs had a higher generation of reactive oxygen species (ROS) than commercial Ce6, and they killed HepG2 cells specifically in vitro. These findings give a clear way for the development of advanced PSs with homologous labeling functions. A template for NPs or other fluorophores modified by targeting groups is also provided.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Dian Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Zhong Chen
- School of Materials and Mechanical and Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P. R. China
| |
Collapse
|
11
|
Zhao H, Zhong H, Jiang Y, Li H, Tang P, Li D, Feng Y. Porous ZnCl 2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:895. [PMID: 35160841 PMCID: PMC8839101 DOI: 10.3390/ma15030895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
It is of great interest and importance to resource utilization of waste biomass to produce porous carbon for environmental treatments. Pore structure and properties of the obtained carbon mainly relate to carbonization conditions and biomass types. In this work, a series of porous, biomass-activated carbons (AC) were prepared using shaddock peel, with ZnCl2 as a pore-forming agent. The effect of carbonization temperature and the mass ratio between ZnCl2 and shaddock peel were thoroughly investigated. The material composition, surface chemical properties, and surface structures of samples were carefully characterized. The specific surface area and adsorption capacity to methylene blue (MB) of adsorbents were changed with the carbonization temperature and the mass ratios between ZnCl2 and shaddock peel; when the temperature was at 1000 °C and the mass ratio was equal to 2:1, the resulting adsorbent had the largest specific surface area of 2398.74 m2/g and average pore size of 3.04 nm, which showed the highest adsorption capacity to MB to be 869.57 mg/g. The adsorption processes of biomass AC adsorbent matched the pseudo-second-order kinetic model and Langmuir isotherm model. This efficient and environmentally friendly biomass AC adsorbent from shaddock peel, activated by ZnCl2, is a promising candidate for the treatment of water pollution.
Collapse
Affiliation(s)
- Hongxia Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| | - Haihong Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| | - Yu Jiang
- Beijing Municipal Construction Group Co., Ltd., A40 Xingshikou Road, Haidian District, Beijing 100195, China;
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (H.Z.); (H.Z.); (H.L.); (P.T.); (D.L.)
| |
Collapse
|
12
|
Highly efficient photocatalytic overall water splitting on plasmonic Cu 6Sn 5/polyaniline nanocomposites. J Colloid Interface Sci 2021; 609:785-793. [PMID: 34839913 DOI: 10.1016/j.jcis.2021.11.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022]
Abstract
A plasmonic Cu6Sn5/polyaniline (Cu6Sn5/PANI) nanocomposite was synthesized by chemical reduction and hydrothermal methods. The best photocatalytic overall water splitting performance was achieved by the Cu6Sn5/PANI3wt% composite, which contains 3 wt% PANI, which is approximately three times more than that of pure Cu6Sn5. Meanwhile, Cu6Sn5/PANI3wt% exhibited excellent photocatalytic stability for water splitting during the stability investigation. The dramatic promotion of the photocatalytic activity performance can be ascribed to the cocatalyst PANI. The existence of PANI can remarkably promote the separation and transfer efficiency of the photoinduced electron-hole pairs, and therefore enhance the photocatalytic activity. Our results also verify that the photogenerated charge comes from plasmonic Cu6Sn5 with the surface plasmon resonance (SPR) effect, which is different from traditional semiconductor-based photocatalysts. This work sheds some light on plasmonic photocatalyst development and provides an alternative pathway for photocatalytic reactions.
Collapse
|
13
|
Photocatalytic Activity of S-Scheme Heterostructure for Hydrogen Production and Organic Pollutant Removal: A Mini-Review. NANOMATERIALS 2021; 11:nano11040871. [PMID: 33808089 PMCID: PMC8066994 DOI: 10.3390/nano11040871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
Finding new technologies and materials that provide real alternatives to the environmental and energy-related issues represents a key point on the future sustainability of the industrial activities and society development. The water contamination represents an important problem considering that the quantity and complexity of organic pollutant (such as dyes, pesticides, pharmaceutical active compounds, etc.) molecules can not be efficiently addressed by the traditional wastewater treatments. The use of fossil fuels presents two major disadvantages: (1) environmental pollution and (2) limited stock, which inevitably causes the energy shortage in various countries. A possible answer to the above issues is represented by the photocatalytic technology based on S-scheme heterostructures characterized by the use of light energy in order to degrade organic pollutants or to split the water molecule into its components. The present mini-review aims to outline the most recent achievements in the production and optimization of S-scheme heterostructures for photocatalytic applications. The paper focuses on the influence of heterostructure components and photocatalytic parameters (photocatalyst dosage, light spectra and intensity, irradiation time) on the pollutant removal efficiency and hydrogen evolution rate. Additionally, based on the systematic evaluation of the reported results, several perspectives regarding the future of S-scheme heterostructures were included.
Collapse
|
14
|
Jiang W, Lv M, Gao B, Liu B, Yan G, Zhou S, Liu C, Xie W, Che G. Facile construction of an Ag 0-doped Ag( i)-based coordination polymer via a self-photoreduction strategy for enhanced visible light driven photocatalysis. CrystEngComm 2021. [DOI: 10.1039/d1ce00699a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Ag0-doped Ag(i)-based coordination polymers have been prepared via a facile self-photoreduction strategy, and can be utilized as efficient photocatalysts for photocatalytic degradation of methylene blue.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- College of Environmental Science and Engineering
| | - Mengying Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Baihui Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Guosong Yan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Shi Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- College of Environmental Science and Engineering
| | - Wei Xie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| |
Collapse
|