1
|
Hidalgo RBP, Molina-Courtois JN, Carreón YJP, Díaz-Hernández O, González-Gutiérrez J. Dried blood drops on vertical surfaces. Colloids Surf B Biointerfaces 2024; 234:113716. [PMID: 38160474 DOI: 10.1016/j.colsurfb.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The analysis of structures in dried droplets has made it possible to detect the presence and conformational state of macromolecules in relevant biofluids. Therefore, the implementation of novel drying strategies for pattern formation could facilitate the identification of biomarkers for the diagnosis of pathologies. We present an experimental study of patterns formed by evaporating water-diluted blood droplets on a vertical surface. Three significant morphological features were observed in vertical droplet deposits: (1) The highest concentration of non-volatile molecules is consistently deposited in the lower part of the droplet, regardless of erythrocyte concentration. (2) The central region of deposits decreases rapidly with hematocrit; (3) At high erythrocyte concentrations (36-40% HCT), a broad coating of blood serum is produced in the upper part of the deposit. These findings are supported by the radial intensity profile, the relative thickness of the crown, the aspect ratio of the deformation, the relative area of the central region, and the Entropy of the Gray Level Co-occurrence Matrix Entropy (GLCM). Moreover, we explore the pattern formation during the drying of vertical blood drops. We found that hematocrit concentration has a significant impact on droplet drying dynamics. Finally, we conducted a proof-of-concept test to investigate the impact of vertical droplet evaporation on blood droplets with varying lipid concentrations. The results revealed that it is possible to differentiate between deposits with normal, slightly elevated, and moderately elevated lipid levels using only the naked eye.
Collapse
Affiliation(s)
- Roxana Belen Pérez Hidalgo
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Josías N Molina-Courtois
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Yojana J P Carreón
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México; CONACyT, México City, México
| | - Orlando Díaz-Hernández
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Jorge González-Gutiérrez
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
| |
Collapse
|
2
|
Syrodoy S, Kuznetsov G, Voytkova K, Gutareva N. Mathematical Modeling of the Evaporation of a Water Drop from a Heated Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5041-5055. [PMID: 36989215 DOI: 10.1021/acs.langmuir.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This paper presents the results of mathematical modeling of the evaporation of a single water drop from the surface of a copper substrate using a new model, which does not require special experiments to close the system of equations and the corresponding boundary conditions with empirical constants. On the basis of the results of mathematical modeling, it was found that convective currents that occur in a small water drop (≤1 mm in diameter) do not significantly affect the characteristics or conditions of heat and mass transfer processes occurring in a liquid drop heated on a copper substrate. The results of numerical simulation showed that during the initial period of droplet heating, the latter undergoes a rapid transformation of the flow field. Five seconds after the beginning of the thermal action, a quasi-stationary regime of flows in the drop sets in. The model is tested on known experimental data. The theoretical analysis of temperatures at the characteristic points of a water drop and the surface on which the drop is located is carried out in ranges of thermal loads quite typical for practice, conditions for transferring heat and water vapor to the environment. According to the results of mathematical modeling, the possibility of using the developed model in the analysis of the state of cooling of surfaces heated to high temperatures, in cases typically used, is substantiated.
Collapse
Affiliation(s)
- Semen Syrodoy
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia
| | - Geniy Kuznetsov
- Saint-Petersburg State Marine Technical University, 3, Lotsmanskaya Strasse, Saint-Petersburg 190121, Russia
| | - Kseniya Voytkova
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia
| | - Nadezhda Gutareva
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia
| |
Collapse
|
3
|
Issakhani S, Jadidi O, Farhadi J, Bazargan V. Geometrically-controlled evaporation-driven deposition of conductive carbon nanotube patterns on inclined surfaces. SOFT MATTER 2023; 19:1393-1406. [PMID: 36723256 DOI: 10.1039/d2sm01431a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controllable accumulation of carbon nanotubes in self-assembly techniques is of critical importance in smart patterning and printed electronics. This study investigates how inclining the substrate and inhibiting the droplet spreading by sharp solid edges can affect the droplet contact angle and pinning time to improve the electrical conductivity and uniformity of the deposited patterns. Rectangular and circular pedestals were employed to investigate the effect of geometry on the deposition characteristics and to incorporate the gravitational effect by varying the substrate inclination angle. The results indicate that confining the droplet contact line to remain pinned to the pedestal edge can significantly alter the width, uniformity, and precision of the deposited patterns. These improvements correspond to the enhancement of the droplet pinning time (due to the edge effect) and to the further increase of the local evaporation rate near the contact line (due to the droplet elevation). By conducting experiments on different rectangular pedestals with varying solid-liquid interfacial areas and comparing their deposition characteristics, a rectangular pedestal with specific dimensions is selected in terms of pattern consistency and material usage efficiency. It is also shown that higher inclination angles further increase the deposited line accumulation density. Combining confinement and inclination techniques yields promising deposited patterns with high consistency and low resistivity, ranging from 8.75 kΩ mm-1 to a minimum of 0.63 kΩ mm-1 for a 3 × 6 mm2 rectangular pedestal.
Collapse
Affiliation(s)
- Shervin Issakhani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Omid Jadidi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Jafar Farhadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Vahid Bazargan
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Kumar S, Charitatos V. Influence of Surface Roughness on Droplet Evaporation and Absorption: Insights into Experiments from Lubrication-Theory-Based Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15889-15904. [PMID: 36519694 DOI: 10.1021/acs.langmuir.2c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While solid substrates are often idealized as being perfectly smooth, all real surfaces possess some level of topographical and chemical heterogeneity. This heterogeneity can greatly influence droplet dynamics. Mathematical models based on lubrication theory that account for surface roughness reveal how topographical defects induce contact-line pinning and affect the deposition patterns of colloidal particles suspended in the droplet. Contact-line pinning profoundly changes the behavior of droplet evaporation on horizontal and inclined impermeable substrates and droplet absorption on horizontal permeable substrates. Models accounting for surface roughness yield predictions that are qualitatively consistent with experimental observations and also provide insight into the underlying physical mechanisms. These models are a foundation for the exploration of a rich array of problems concerning droplet dynamics which are of both fundamental and practical interest.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vasileios Charitatos
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Kampouraki ZC, Petala M, Boumpakis A, Skordaris G, Michailidis N, Deliyanni E, Kostoglou M, Karapantsios TD. Wetting and Imbibition Characteristics of Pseudomonas fluorescens Biofilms Grown on Stainless Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9810-9821. [PMID: 35786927 DOI: 10.1021/acs.langmuir.2c00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aims to provide insights into biofilm resistance associated with their structural properties acquired during formation and development. On this account, the wetting and imbibition behavior of dehydrated Pseudomonas fluorescens biofilms grown on stainless steel electropolished substrates is thoroughly examined at different biofilm ages. A polar liquid (water) and a non-polar liquid (diiodomethane) are employed as wetting agents in the form of sessile droplets. A mathematical model is applied to appraise the wetting and imbibition performance of biofilms incorporating the evaporation of sessile droplets. The present results show that the examined biofilms are hydrophilic. The progressive growth of biofilms leads to a gradual increase of substrate surface coverage─up to full coverage─accompanied by a gradual decrease of biofilm surface roughness. It is noteworthy that just after 24 h of biofilm growth, the surface roughness increases about 6.7 times the roughness of the clean stainless steel surface. It is further found that the imbibition of liquid in the biofilm matrix is restricted only to the biofilm region under the sessile droplet. The lack of further capillary imbibition into the biofilm structure, beyond the droplet deposition region, implies that the biofilm matrix is not in the form of an extended network of interconnected micro/nanopores. All in all, the present results indicate a resilient biofilm structure to biocide penetration despite its hydrophilic nature.
Collapse
Affiliation(s)
- Zoi Christina Kampouraki
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Maria Petala
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Apostolos Boumpakis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Georgios Skordaris
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Nikolaos Michailidis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Eleni Deliyanni
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Tredenick EC, Stuart-Williams H, Enge TG. Materials on Plant Leaf Surfaces Are Deliquescent in a Variety of Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:722710. [PMID: 35903227 PMCID: PMC9315345 DOI: 10.3389/fpls.2022.722710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Materials on plant leaf surfaces that attract water impact penetration of foliar-applied agrochemicals, foliar water uptake, gas exchange, and stomatal density. Few studies are available on the nature of these substances, and we quantify the hygroscopicity of these materials. Water vapor sorption experiments on twelve leaf washes of sample leaves were conducted and analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffraction. All leaf surface materials studied were hygroscopic. Oils were found on the surface of the Eucalyptus studied. For mangroves that excrete salt to the leaf surfaces, significant sorption occurred at high humidity of a total of 316 mg (~0.3 ml) over 6-10 leaves and fitted a Guggenheim, Anderson, and de Böer sorption isotherm. Materials on the plant leaf surface can deliquesce and form an aqueous solution in a variety of environments where plants grow, including glasshouses and by the ocean, which is an important factor when considering plant-atmosphere relations.
Collapse
Affiliation(s)
- E. C. Tredenick
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - H. Stuart-Williams
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T. G. Enge
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Tredenick EC, Farquhar GD. Dynamics of moisture diffusion and adsorption in plant cuticles including the role of cellulose. Nat Commun 2021; 12:5042. [PMID: 34413297 PMCID: PMC8377085 DOI: 10.1038/s41467-021-25225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food production must increase significantly to sustain a growing global population. Reducing plant water loss may help achieve this goal and is especially relevant in a time of climate change. The plant cuticle defends leaves against drought, and so understanding water movement through the cuticle could help future proof our crops and better understand native ecology. Here, via mathematical modelling, we identify mechanistic properties of water movement in cuticles. We model water sorption in astomatous isolated cuticles, utilising three separate pathways of cellulose, aqueous pores and lipophilic. The model compares well to data both over time and humidity gradients. Sensitivity analysis shows that the grouping of parameters influencing plant species variations has the largest effect on sorption, those influencing cellulose are very influential, and aqueous pores less so but still relevant. Cellulose plays a significant role in diffusion and adsorption in the cuticle and the cuticle surfaces.
Collapse
Affiliation(s)
- E C Tredenick
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - G D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|