1
|
Jani PK, Yadav K, Derkaloustian M, Koerner H, Dhong C, Khan SA, Hsiao LC. Compressing slippery surface-assembled amphiphiles for tunable haptic energy harvesters. SCIENCE ADVANCES 2025; 11:eadr4088. [PMID: 39813335 PMCID: PMC11734710 DOI: 10.1126/sciadv.adr4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures. We propose a scaling framework for their friction reduction properties that accounts for adhesion and contact mechanics. Amphiphile-coated surfaces tend to resist wear and generate distinct tactile perception, with humans preferring more slippery materials. Separately, triboelectric output is enhanced through the use of amphiphiles with high electron affinity. Because device adoption is tied to both friction reduction and electron-withdrawing potential, molecules that self-organize into slippery planes under pressure represent a facile way to advance the development of haptic power harvesters at scale.
Collapse
Affiliation(s)
- Pallav K. Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kushal Yadav
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Maryanne Derkaloustian
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Hilmar Koerner
- Air Force Research Laboratory, RXNP, Wright-Patterson Air Force Base, Fairborn, OH, USA
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Saad A. Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Lilian C. Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Gubała D, Slastanova A, Matthews L, Islas L, Wąsik P, Cacho-Nerin F, Ferreira Sanchez D, Robles E, Chen M, Briscoe WH. Effects of Erucamide on Fiber "Softness": Linking Single-Fiber Crystal Structure and Mechanical Properties. ACS NANO 2024. [PMID: 38334316 PMCID: PMC10883039 DOI: 10.1021/acsnano.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".
Collapse
Affiliation(s)
- Dajana Gubała
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Lauren Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Luisa Islas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Patryk Wąsik
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Fernando Cacho-Nerin
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Eric Robles
- Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, U.K
| | - Meng Chen
- Procter & Gamble Technology (Beijing) Co., Ltd., 35 Yu'an Rd, Shunyi District, Beijing 101312, China
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
3
|
Cammarata MDM, Contin MD, Negri RM, Factorovich MH. Diffusion Coefficients of Variable-Size Amphiphilic Additives in a Glass-Forming Polyethylene Matrix. J Phys Chem B 2024; 128:312-328. [PMID: 38146058 DOI: 10.1021/acs.jpcb.3c04904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diffusion of additives in polymers is an important issue in the plastics industry since migratory-type molecules are widely used to tune the properties of polymeric composites. Predicting the diffusional behavior of new additives can minimize the need for repetitive experiments. This work presents molecular dynamics simulations at the microsecond time scale and uses the MARTINI force field to estimate self-diffusion coefficients, D, of six monounsaturated amides and their analogs carboxylic acids in polyethylene matrices (PE, MW = 5600 Da). The results are strongly influenced by the glass-forming properties of the PE matrix, which we characterize by three distinct temperatures. The metastability region (T < 325 K), the glass transition temperature (Tg = 256-260 K), and the end of the transition (T ≅ 200 K). Self-diffusion mechanisms are inferred from the results of the dependence of D on the molecular mass of the additive, observing a Rouse-like behavior at high temperatures and deviations from it within the metastability region of the matrix. Interestingly, D values are nonsensitive to the nature of the considered polar head for additives of similar size. The temperature-dependent behavior of D follows, at fixed additive size, a linear Arrhenius pattern at high temperatures and a super Arrhenius trend at lower temperatures, which is well represented with a power law equation as predicted by the Mode Coupling Theory (MCT). We offer a conceptual explanation for the observed super-Arrhenius behavior. This explanation draws on Truhlar and Kohen's interpretation of the available energies at both the initial and the transition states along the diffusion pathway. The matrix's mobility significantly affects solute self-diffusion, yielding equal activation enthalpies for the Arrhenius region or the same power law parameters for the super-Arrhenius regime. Finally, we establish a one-to-one time-equivalence of the self-diffusion processes between CG and all-atom systems for the largest additives and the PE matrix in the high-temperature regime.
Collapse
Affiliation(s)
- María Del Mar Cammarata
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mario D Contin
- Departamento de Ciencias Química, Catedra de Química Analítica. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires C1113AAD, Argentina
| | - R Martín Negri
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Matias H Factorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
4
|
Cao M, Fan J, Guo C, Chen M, Lv J, Sun W, Xi B, Xu J. Comprehensive investigation and risk assessment of organic contaminants in Yellow River Estuary using suspect and nontarget screening strategies. ENVIRONMENT INTERNATIONAL 2023; 173:107843. [PMID: 36822001 DOI: 10.1016/j.envint.2023.107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Contaminants of emerging concerns (CECs) include numerous chemicals that may pose known and unknown risks to the ecosystem, and identification and risk ranking of these compounds is essential for the environmental management. In this study, liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to characterize the occurrence of CECs in the surface water of the Yellow River Estuary (YRE). A total of 295 and 315 chemicals were identified by LC-QTOF-MS and GC-QTOF-MS, respectively. The occurrence of two compounds, erucamide and 2-phenylquinoline, was for the first time reported in the aquatic environment in YRE. The concentrations of 121 CECs, including 35 antibiotics, 49 pesticides and veterinary, 16 polycyclic aromatic hydrocarbons and 21 phthalic acid esters were further quantified by target analysis, which showed the detection of 99 compounds in the surface water in the range of 7.07-4611.26 ng/L. Ecological risks of pollutants based on the risk quotient (RQ) method revealed that 13 pollutants posed ecological risks to the aquatic ecosystem (RQ > 1), and pesticides (n = 12) were the main risk contributors. Here, all CECs data sets were finally transformed and ranked in the framework of the toxicological priority index (ToxPi), and a total of 81 priority control pollutants were identified in the surface water of YRE. This study highlighted the necessity of suspect and nontarget screening for CECs in estuaries, and revealed the importance of localized contamination sources in urban and agricultural environment.
Collapse
Affiliation(s)
- Miao Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Sun
- Waters Technologies Shanghai Limited, Shanghai 201206, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Gubała D, Taylor N, Harniman R, Rawle J, Hussain H, Robles E, Chen M, Briscoe WH. Structure, Nanomechanical Properties, and Wettability of Organized Erucamide Layers on a Polypropylene Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6521-6532. [PMID: 34015220 DOI: 10.1021/acs.langmuir.1c00686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular packing, thickness, and surface coverage of the erucamide layers, while peak force quantitative nanomechanical mapping (QNM) showed that erucamide reduced the adhesive response on polypropylene. Synchrotron X-ray reflectivity (XRR) was used to probe the out-of-plane structure of the surface layers. Static contact angle measurements further corroborated on the resulting wettability, also demonstrating the efficacy of erucamide physisorption in facilitating control over polypropylene surface wetting. The results show the formation of erucamide monolayers, bilayers and multilayers, depending on the concentration in the spin-cast solution. Correlation of AFM, XRR and wettability results consistently points to the molecular orientation in the outermost layer, i.e. with the erucamide tails pointing outward for the surface nanostructures with different morphologies (i.e., bilayers and multilayers). Rare occurrence of monolayers with exposed hydrophilic head groups were observed only at the lowest erucamide concentration. Compared with our previous observations on the hydrophilic surface, the erucamide surface coverage was much higher on the more hydrophobic propylene surface at similar erucamide concentrations in the spin-cast solution. Furthermore, the structure, molecular orientation and nanomechanical properties of the spin-cast erucamide multilayers atop polypropylene were also similar to those on industrially relevant polypropylene fibers coated with erucamide via blooming. These findings shed light on the nanostructural features of the erucamide surface layer underpinning its nanomechanical properties, relevant to many applications in which erucamide is commonly used as a slip additive.
Collapse
Affiliation(s)
- Dajana Gubała
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nicholas Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Robert Harniman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan Rawle
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Hadeel Hussain
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Eric Robles
- Household Care Analytical, Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, United Kingdom
| | - Meng Chen
- Procter & Gamble Beijing Innovation Centre, 35 Yu'an Rd, Shunyi District, Beijing 101312, China
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|