1
|
Guo S, Cai Y, Cheng L, Yuan Y, Wang Y, Yu H, Hu Z, Chen D, Yuan H. Ultraflexible Ultrathin 3D/1D Hierarchical Interpenetrating Ni-MOF/CNT Buckypaper Composites: Microstructures and Microwave Absorption Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32713-32726. [PMID: 38860983 DOI: 10.1021/acsami.4c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted attention due to their designable structures. However, recently reported MOF microwave-absorbing materials (MAMs) are dominated by powders. It remains a challenge to design MOF/carbon nanotube (CNT) composite structures that combine the mechanical properties of self-supporting flexibility with excellent microwave absorption. This work involves the hydrothermal approach to grow Ni-MOF of different microstructures in situ on the CNT monofilament by adjusting the molar ratio of nickel ions to organic ligands. Subsequently, an ultraflexible self-supporting Ni-MOF/CNT buckypaper (BP) is obtained by directional gas pressure filtration technology. The BP porous skeleton and the Ni-MOF with a unique porous structure provide effective impedance matching. The CNTs contribute to the conduction loss, the cross-scale heterogeneous interface generated by Ni-MOF/CNT BP provides rich interfacial polarization loss, and the porous structure complicates the microwave propagation path. All factors work together to give Ni-MOF/CNT BP an excellent microwave absorption capacity. The minimum reflection losses of Ni-MOF/CNT BPs decorated with granular-, hollow porous prism-, and porous prism-shaped Ni-MOFs reach -50.8, -57.8, and -43.3 dB, respectively. The corresponding effective absorption bandwidths are 4.5, 6.3, and 4.8 GHz, respectively. Furthermore, BPs show remarkable flexibility as they can be wound hundreds of times around a glass rod with a diameter of 4 mm without structural damage. This work presents a new concept for creating ultraflexible self-supported MOF-based MAMs with hierarchical interpenetrating porous structures, with potential application advantages in the field of flexible electronics.
Collapse
Affiliation(s)
- Siyu Guo
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yanzhi Cai
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Laifei Cheng
- Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yibing Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yuhan Wang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Haiming Yu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Zhongyi Hu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Dengpeng Chen
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Hudie Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| |
Collapse
|
2
|
Dou Y, Zhang X, Zhao X, Li X, Jiang X, Yan X, Yu L. N, O-Doped Walnut-Like Porous Carbon Composite Microspheres Loaded with Fe/Co Nanoparticles for Adjustable Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308585. [PMID: 38212280 DOI: 10.1002/smll.202308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 01/13/2024]
Abstract
This study addresses the challenge of designing simple and environmentally friendly methods for the preparation of effective electromagnetic wave (EMW) absorbing materials with tailored microstructures and multi-component regulation. N, O doped walnut-like porous carbon composite microspheres loaded with FeCo nanoparticles (WPCM/Fe-Co) are synthesized through high-temperature carbonization combined with soap-free emulsion polymerization and hydrothermal methods, avoiding the use of toxic solvents and complex conditions. The incorporation of magnetic components enhances magnetic loss, complementing dielectric loss to optimize EMW attenuation. The unique walnut-like morphology further improves impedance matching. The proportions of Fe and Co components can be adjusted to regulate the material's reflection loss, thickness, and bandwidth, allowing for fine-tuning of absorption performance. At a low filling ratio (16.7%), the optimal WPCM/Fe-Co composites exhibit a minimum reflection loss (RLmin) of -48.34 dB (10.33 GHz, 3.0 mm) and an overall effective absorbing bandwidth (EAB) covering the entire C bands, X bands, and Ku bands. This work introduces a novel approach to composition regulation and presents a green synthesis method for magnetic carbon composite absorbers with high-performance EMW absorption at low loading.
Collapse
Affiliation(s)
- Yuye Dou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiangyi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xinbo Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xia Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiaohui Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| |
Collapse
|
3
|
Zhang W, Du H, Wang L, Rehman SU, Shen S, Dong W, Hu Y, Zou H, Liang T. Preparation of MIL-88(Fe)@Fe 2O 3@FeSiCr double core-shell-structural composites and their wave-absorbing properties. Phys Chem Chem Phys 2024; 26:1671-1683. [PMID: 38126187 DOI: 10.1039/d3cp05641d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
To tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are being urgently explored. The FeSiCr soft magnetic alloy is one of the more widely used and well-received iron-based soft magnetic alloy materials with high permeability; however, the development of high-performance FeSiCr alloy wave-absorbing materials is still a major challenge. In this study, double core-shell-structured composites of MIL-88(Fe)@Fe2O3@FeSiCr were successfully prepared by the oxidative heat treatment of the flaky FeSiCr obtained after ball milling and then in situ composited with MIL-88(Fe). The heterogeneous interfacial composition and microstructure were regulated to balance the microwave-loss capability and impedance matching of the material, and an enhancement of the composite absorbing performance was achieved. The composite material had a reflection-loss minimization (RLmin) of -72.65 dB, corresponding to a frequency of 6.61 GHz, with an absorbing coating thickness of 2.97 mm and an effective absorbing bandwidth (RL ≤ -10 dB) of 2.38 GHz (5.42-7.80 GHz). The results of this study provide useful ideas for wave-absorbing materials by applying high permeability soft magnetic alloy micropowders.
Collapse
Affiliation(s)
- Wenmiao Zhang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
- Jiangxi Qianyue New Materials Co., Ltd., Ganzhou 341003, P. R. China.
| | - Hongzhang Du
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Lei Wang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
- Jiangxi Qianyue New Materials Co., Ltd., Ganzhou 341003, P. R. China.
| | - Sajjad Ur Rehman
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Shuqi Shen
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Weiwei Dong
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Yifeng Hu
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Haiping Zou
- Hejun College, Ganzhou 342600, P. R. China
- Jiangxi Qianyue New Materials Co., Ltd., Ganzhou 341003, P. R. China.
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| |
Collapse
|
4
|
Zhu B, Gao Y, Hao H, Ji G, Yang C, Wang F, Su J, Wu X, Song X, Ma L, Li G, Tian Y. One-pot synthesis of coal gangue–derived NiCG composite for enhancing microwave absorption. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Zhao H, Jin C, Yang X, Lu P, Cheng Y. Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co 7Fe 3/Co 5.47N nanoparticles for high-performance microwave absorption. J Colloid Interface Sci 2023; 645:22-32. [PMID: 37137275 DOI: 10.1016/j.jcis.2023.04.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Low-dimensional cell-decorated three-dimensional (3D) hierarchical structures are considered excellent candidates for achieving remarkable microwave absorption. In the present work, a one-dimensional (1D) carbon nanotube (CNT)-decorated 3D crucifix carbon framework embedded with Co7Fe3/Co5.47N nanoparticles (NPs) was fabricated by the in-situ pyrolysis of a trimetallic metal-organic framework (MOF) precursor (ZIF-ZnFeCo). Co7Fe3/Co5.47N NPs were uniformly dispersed on the carbon matrix. The 1D CNT nanostructure was well regulated on the 3D crucifix surface by changing the pyrolysis temperature. The synergistic effect of 1D CNT and the 3D crucifix carbon framework increased the conductive loss, and Co7Fe3/Co5.47N NPs induced interfacial polarization and magnetic loss; thus, the composite manifested superior microwave absorption performance. The optimum absorption intensity was -54.0 dB, and the effective absorption frequency bandwidth reached 5.4 GHz at a thickness of 1.65 mm. The findings of this work could provide significant guidance for the fabrication of MOF-derived hybrids for high-performance microwave absorption applications.
Collapse
Affiliation(s)
- Huanqin Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Changqing Jin
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Xin Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Ping Lu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Yan Cheng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
6
|
Checkerboard-like nickel nanoislands/defect graphene aerogel with enhanced surface plasmon resonance for superior microwave absorption. J Colloid Interface Sci 2023; 629:44-52. [DOI: 10.1016/j.jcis.2022.08.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
|
7
|
Rao Y, Qi X, Peng Q, Chen Y, Gong X, Xie R, Zhong W. Flower-like NiO to flower-like NiO/Ni@C microspheres: An effective strategy to comprehensively improve the loss capabilities. J Colloid Interface Sci 2023; 629:981-993. [DOI: 10.1016/j.jcis.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
|
8
|
Gao Z, Iqbal A, Hassan T, Zhang L, Wu H, Koo CM. Texture Regulation of Metal-Organic Frameworks, Microwave Absorption Mechanism-Oriented Structural Optimization and Design Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204151. [PMID: 36253151 PMCID: PMC9762306 DOI: 10.1002/advs.202204151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 05/12/2023]
Abstract
Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.
Collapse
Affiliation(s)
- Zhenguo Gao
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Tufail Hassan
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Chong Min Koo
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Chemical EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| |
Collapse
|
9
|
Ren Q, Feng T, Song Z, Zhou P, Wang M, Zhang Q, Wang L. Autogenous and Tunable CNTs for Enhanced Polarization and Conduction Loss Enabling Sea Urchin-Like Co 3ZnC/Co/C Composites with Excellent Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41246-41256. [PMID: 36045505 DOI: 10.1021/acsami.2c13064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ZIF-67-derived magnetic metal/carbon composites are considered prospective candidates for use as microwave absorption (MA) materials owing to their magnetoelectric synergy. However, the structure of ZIF-67-derived MA materials mainly depends on the morphology and composition of pristine metal-organic frameworks (MOFs), and their microstructures lack a rational design. Herein, a multidimensional sea urchin-like carbon nanotubes (CNTs)-grafted carbon polyhedra-encapsulated Co3ZnC/Co nanoparticle composite was prepared by one-step catalytic pyrolysis of ZIF-67/ZnO using a rational structural design. The autogenous and tunable CNTs obtained with the assistance of zinc evaporation not only overcome the limitation of homogeneous dispersion but also endow the Co3ZnC/Co/C composite with outstanding MA properties owing to the conduction loss provided by CNTs, polarization loss caused by multiple components, and electromagnetic wave trap composed of a special sea urchin-like structure. Consequently, the minimum reflection loss of ZZ0.1-600 reaches -60.3 dB at 1.6 mm, the maximum absorption bandwidth of ZZ0.05-600 is 6.24 GHz (covering nearly the entire Ku band) at 1.9 mm, and the structure has a low weight ratio (30 wt %). Compared with Z-600 and pure ZnO, the MA performance of the sea urchin-like Co3ZnC/Co/C composite obtained by rational structural design has been greatly improved; this strategy offers a new approach for optimizing the MA performance of materials according to their structural design.
Collapse
Affiliation(s)
- Qingguo Ren
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tong Feng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Panpan Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qitu Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Lixi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| |
Collapse
|
10
|
Zeng Z, Xu D, Li M, Liu Z, Xu R, Liu D. Confined transformation of trifunctional Co2(OH)2CO3 nanosheet assemblies into hollow porous Co@N-doped carbon spheres for efficient microwave absorption. J Colloid Interface Sci 2022; 622:625-636. [DOI: 10.1016/j.jcis.2022.04.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023]
|
11
|
Tao J, Tan R, Xu L, Zhou J, Yao Z, Lei Y, Chen P, Li Z, Ou JZ. Ion-Exchange Strategy for Metal-Organic Frameworks-Derived Composites with Tunable Hollow Porous and Microwave Absorption. SMALL METHODS 2022; 6:e2200429. [PMID: 35676230 DOI: 10.1002/smtd.202200429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hollow metal-organic frameworks (MOFs) with careful phase engineering have been considered to be suitable candidates for high-performance microwave absorbents. However, there has been a lack of direct methods tailored to MOFs in this area. Here, a facile and safe Ni2+ -exchange strategy is proposed to synthesize graphite/CoNi alloy hollow porous composites from Ni2+ concentration-dependent etching of Zeolite imidazole frame-67 (ZIF-67) MOF and subsequent thermal field regulation. Such a special combination of hollow structure and carefully selected hybrid phase are with optimized impedance matching and electromagnetic attenuation. Especially, the suitable carrier transport model and the rich polarization site enhance the dielectric loss, while more significant hysteresis loss and more natural resonance increase the magnetic loss. As a result, excellent microwave absorbing (MA) performances of both broadband absorption (7.63 GHz) and high-efficiency loss (-63.79 dB) are obtained. Moreover, the applicability and practicability of the strategy are demonstrated. This work illustrates the unique advantages of ion-exchange strategy in structure design, component optimization, and electromagnetic regulation, providing a new reference for the 5G cause and MA field.
Collapse
Affiliation(s)
- Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Ruiyang Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Yiming Lei
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Ping Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210000, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| |
Collapse
|
12
|
Zheng J, He W, Hang T, Sun Z, Li Z, Jiang S, Li X, E S, Chen Y. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. J Colloid Interface Sci 2022; 628:261-270. [PMID: 35998452 DOI: 10.1016/j.jcis.2022.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Recently, high-performance functional composites for electromagnetic wave absorption (EWA) with tunable nano/micro-structures have attracted extensive attention. Herein, the flower-like electrically conductive and magnetic cobalt-nickel@carbon (CoNi@C) composites derived from bimetallic metal-organic frameworks (MOFs) were fabricated via solvothermal method and pyrolysis. By adjusting the ratios of different precursors, different morphological features of composites were formed. When the molar ratio of Co and Ni was 1:2, the CoNi@C composites exhibited the optimal minimum reflection loss (RLmin) of -56.89 dB at 6.7 GHz with an effective absorption bandwidth of 4.7 GHz, due to the coordinated dielectric and magnetic loss caused by the electromagnetic properties of each component as well as the interactions between the unique three-dimensional (3D) interfaces of flower-like structures that promoted the absorption and dissipation of composites for microwaves. The composites are expected to become promising candidates as high-efficiency absorbers in the electromagnetic protection field.
Collapse
Affiliation(s)
- Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Weiwei He
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaoxu Sun
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihui Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Song Y, Liu X, Gao Z, Wang Z, Hu Y, Yang K, Zhao Z, Lan D, Wu G. Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J Colloid Interface Sci 2022; 620:263-272. [DOI: 10.1016/j.jcis.2022.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/16/2022]
|
14
|
Controlled fabrication of core–shell γ-Fe2O3@C–Reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J Colloid Interface Sci 2022; 615:685-696. [DOI: 10.1016/j.jcis.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
|
15
|
Wang L, Zhu S, Zhu J. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J Colloid Interface Sci 2022; 624:423-432. [PMID: 35667204 DOI: 10.1016/j.jcis.2022.05.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
Rational design of porous carbon architecture is essential for superior microwave absorbing performance. Herein, we report a new type of hollow porous Co/C polyhedral nanocages with ordered macropores of ∼60 nm (HP-Co/C) as microwave absorber, which were readily manufactured by epitaxial growth of ZIF-67/SiO2 nanolayers on the surfaces of polyhedral ZIF-8 nanoparticle, and followed by simple calcination in Ar atmosphere and subsequent removal of SiO2 with HF. The ordered macropores can effectively tune the electromagnetic parameters of HP-Co/C, affording the obtained HP-Co/C composites strong attenuation capability and excellent impedance matching characteristics for electromagnetic wave (EMW) absorption. As a result, the reflection loss (RL) and effective absorption bandwidth (EAB) of HP-Co/C prepared under pyrolysis temperature of 600 °C can reach up to -66.5 dB and 8.96 GHz, respectively, at filler fraction of only 15 wt%. Together, this study offers a new design philosophy to make lightweight and broadband microwave absorbent and can be extended to other types of microwave absorbers, significantly enriching the categories of the efficient microwave absorbing materials.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuheng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - JianFeng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Shu R, Wu Y, Li X, Li N, Shi J. Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers. J Colloid Interface Sci 2022; 613:477-487. [PMID: 35051722 DOI: 10.1016/j.jcis.2022.01.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 11/25/2022]
Abstract
Developing lightweight and high-efficiency microwave absorbents derived from metal-organic frameworks (MOFs) was proven to be a promising strategy to solve the increasingly serious problem of electromagnetic radiation pollution. In this work, nitrogen-doped cobalt iron alloy@carbon-carbon nanotubes (CoFe alloy@C-CNTs) composites were fabricated through an aging and pyrolysis two-step method. Results revealed that the attained composites presented a unique four-pointed star morphology and lots of CoFe alloy nanoparticles were uniformly embedded into the porous carbon matrix. Moreover, it was found that the pyrolysis temperature had a notable effect on the microwave absorption properties of CoFe alloy@C-CNTs composites. Remarkably, the obtained composite under 700.0 °C pyrolysis treatment showed the optimal minimum reflection loss of -54.5 dB with an ultrathin thickness of 1.4 mm and maximum effective absorption bandwidth of 5.0 GHz at a low thickness of 1.6 mm. Additionally, the possible electromagnetic attenuation loss mechanisms of attained composites were illuminated. It was believed that our results could be helpful for fabricating ultrathin and high-performance microwave absorbing materials derived from MOFs.
Collapse
Affiliation(s)
- Ruiwen Shu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China; School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yue Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiaohui Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Ningning Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianjun Shi
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
17
|
Wei S, Chen T, Shi Z, Chen S. Preparation of CoFe@N-doped C/rGO composites derived from CoFe Prussian blue analogues for efficient microwave absorption. J Colloid Interface Sci 2021; 610:395-406. [PMID: 34923277 DOI: 10.1016/j.jcis.2021.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023]
Abstract
At present, in order to solve the problem of microwave radiation and interference, it is urgent to study high performance microwave absorption (MA) materials with strong absorption ability, light weight, thin thickness and broad bandwidth. In this work, CoFe@nitrogen-doped carbon/rGO (CoFe@NC/rGO) composites derived from CoFe Prussian blue analogues were successfully prepared by in situ growth and annealing. And the effects of GO content on the MA performances of the composites were studied systematically. Results reveal that MA properties of CoFe@NC/rGO composites are enhanced by introduction of GO, this is mainly because the addition of GO can provide large specific surface area for microwave reflection, enhance interfacial polarization and compensate the insufficient dielectric loss. Moreover, impedance matching, conduction loss and attenuation ability are also improved obviously. CoFe@NC/rGO composites show outstanding MA capability, and the minimum reflection loss is up to -53.0 dB at a thickness of 2.4 mm, the largest effective absorption bandwidth can achieve 4.48 GHz at a thin thickness of 1.7 mm. In consideration of the superior MA performances, the CoFe@NC/rGO composites will be ideal candidates for high-efficient MA applications.
Collapse
Affiliation(s)
- Shuang Wei
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tao Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhicheng Shi
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shougang Chen
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
18
|
Tao J, Xu L, Wan L, Hou J, Yi P, Chen P, Zhou J, Yao Z. Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption. NANOSCALE 2021; 13:12896-12909. [PMID: 34477773 DOI: 10.1039/d1nr03450b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MOFs with high tunability are considered ideal candidates as microwave-absorbing materials. Strict experimental conditions can ensure the repeatability and maximize the potential of such materials. In this study, cubic ZIF-67 carbides synthesized at different solution temperatures showed an adjustable average size, and then by adjusting the calcination temperature we could control the degree of graphitization, so as to explore the synergistic effect of these two aspects to achieve an in-depth understanding of the electromagnetic properties and microwave absorption properties. The results showed that sample 30-600 (with the former number referring to the synthesis temperature and the latter to the calcination temperature) showed the widest effective absorption bandwidth (5.75 GHz, 1.8 mm) and the optimal reflection loss (-56.92 dB, 2.1 mm). The best matching electromagnetic parameters were obtained under the synergistic action of a smaller particle size and appropriate degree of graphitization, so as to achieve strong attenuation characteristics under low electromagnetic wave reflection. The microwave loss mechanism of the sample mainly involved dielectric losses, such as from conductance loss, dipole polarization, and interface polarization. Starting from the experimental details, this work proposes a dual control strategy for developing microwave-absorbing materials with both simplicity and practicability, which provides a useful reference for other microwave absorbents synthesized at room temperature.
Collapse
Affiliation(s)
- Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kong M, Liu X, Jia Z, Wang B, Wu X, Wu G. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J Colloid Interface Sci 2021; 604:39-51. [PMID: 34261018 DOI: 10.1016/j.jcis.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
To obtain lightweight and efficient electromagnetic wave absorbing materials, Fe2O3@ZnCo-MOF composites were prepared in this paper by in-situ growth method, and CoFe alloys@ZnO@C composites were obtained by subsequent annealing process. By varying the loading of Fe2O3 during the synthesis process, a series of composites were obtained. Among them, CoFe alloys@ZnO@C-0.1 has the best electromagnetic wave absorption performance, which can reach a reflection loss (RL) of -40.63 dB at a thickness of 2.2 mm, while the reflection loss is -44.13 dB at a thickness of 5.0 mm, and the maximum effective absorption bandwidth (EAB) is 5.84 GHz at a thickness of 2.4 mm. The excellent performance can be attributed to the synergistic effect of the dielectric and magnetic properties of the composites as well as the effective impedance matching properties. Thus, the CoFe alloys@ZnO@C composite is expected to be a lightweight and efficient material for electromagnetic wave absorption.
Collapse
Affiliation(s)
- Mingyue Kong
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China; College of Chemistry and Chemical Engineering, Qingdao University, Shandong, Qingdao 266071, PR China; Weihai Innovation Institute, Qingdao University, Shandong 264200, PR China.
| | - Bingbing Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaomeng Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
20
|
Ma C, Wang W, Wang Q, Sun N, Hu S, Wei S, Feng H, Hao X, li W, Kong D, Wang S, Chen S. Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance. J Colloid Interface Sci 2021; 594:604-620. [DOI: 10.1016/j.jcis.2021.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023]
|
21
|
Novel Three-Dimensional Graphene-Like Networks Loaded with Fe 3O 4 Nanoparticles for Efficient Microwave Absorption. NANOMATERIALS 2021; 11:nano11061444. [PMID: 34072587 PMCID: PMC8229329 DOI: 10.3390/nano11061444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/25/2023]
Abstract
A novel three-dimensional graphene-like networks material (3D-GLN) exhibiting the hierarchical porous structure was fabricated with a large-scale preparation method by employing an ion exchange resin as a carbon precursor. 3D-GLN was first studied as the effective microwave absorbing material. As indicated from the results of the electromagnetic parameter tests, and the minimum reflection loss (RL) of the 3D-GLN reached −34.75 dB at the frequency of 11.7 GHz. To enhance the absorption performance of the nonmagnetic 3D-GLN, the magnetic Fe3O4 nanoparticles were loaded on the surface of the 3D-GLN by using the hydrothermal method to develop the 3D-GLN/Fe3O4 hybrid. The hybrid exhibited the prominent absorbing properties. Under the matching thickness of 3.0 mm, the minimum RL value of hybrid reached −46.8 dB at 11.8 GHz. In addition, under the thickness range of 2.0–5.5 mm, the effective absorption bandwidth (RL < 10 dB) was 13.0 GHz, which covered part of the C-band and the entire X-band, as well as the entire Ku-band. The significant microwave absorption could be attributed to the special 3D network structure exhibited by the hybrid and the synergistic effect exerted by the graphene and the Fe3O4 nanoparticles. As revealed from the results, the 3D-GLN/Fe3O4 hybrid could be a novel microwave absorber with promising applications.
Collapse
|
22
|
Xu J, Liu Z, Li Q, Wang Y, Shah T, Ahmad M, Zhang Q, Zhang B. Wrinkled Fe 3O 4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. J Colloid Interface Sci 2021; 601:397-410. [PMID: 34090022 DOI: 10.1016/j.jcis.2021.05.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
In this work, we develop a novel synthetic strategy for wrinkled magnetic composite microspheres (Fe3O4@C). Firstly, hydrophobic oleic acid modified Fe3O4 (OA-Fe3O4) nanoparticles acted as the magnetic component are prepared by synchronous modification coprecipitation method. The macromolecular emulsifier with initiating activity is obtained by means of soap-free emulsion polymerization under the presence of 1,1-diphenylethylene (DPE). Then, interfacial polymerization is employed to synthesis Fe3O4@polymethylglycidyl ester/divinylbenzene composite microspheres (Fe3O4@PGMA/DVB). Fe3O4@C composite microspheres are obtained by vacuum carbonization of the microspheres. The effect of magnetic content on the microwave absorbing properties of Fe3O4@C composite microspheres is explored. The results show that Fe3O4@C composite microspheres exhibit the excellent application performance at the Fe3O4 content of 0.15 g. The reflection loss can reach -53.7 dB at only thickness of 1.7 mm. The Maximum effective absorption bandwidth is up to 5.26 GHz with a thickness of 1.9 mm. The microwave attenuation mechanism of Fe3O4@C composite microspheres is revealed. The excellent absorbing performance is attributed to the enhanced interfacial polarization ability, the surface wrinkled structure and the good synergy between dielectric and magnetic losses. This work provides an effective strategy for the design and preparation of new magnetic composite materials.
Collapse
Affiliation(s)
- Jia Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihao Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yabin Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Tariq Shah
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|