1
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
2
|
Liu H, Wang S, Huang M, Bian Q, Zhang Y, Yang K, Li B, Yao W, Zhou Y, Xie S, Tang BZ, Zeng Z. A Photoelectromagnetic 3D Metal-Organic Framework from Flexible Tetraarylethylene-Backboned Ligand and Dynamic Copper-Based Coordination Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306956. [PMID: 38100256 DOI: 10.1002/smll.202306956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Porous frameworks that display dynamic responsiveness are of interest in the fields of smart materials, information technology, etc. In this work, a novel copper-based dynamic metal-organic framework [Cu3TTBPE6(H2O)2] (H4TTBPE = 1,1,2,2-tetrakis(4″-(1H-tetrazol-5-yl)-[1,1″-biphenyl]-4-yl)ethane), denoted as HNU-1, is reported which exhibits modulable photoelectromagnetic properties. Due to the synergetic effect of flexible tetraarylethylene-backboned ligands and diverse copper-tetrazole coordination chemistries, a complex 3D tunneling network is established in this MOF by the layer-by-layer staggered assembly of triplicate monolayers, showing a porosity of 59%. These features further make it possible to achieve dynamic transitions, in which the aggregate-state MOF can be transferred to different structural states by changing the chemical environment or upon heating while displaying sensitive responsiveness in terms of light absorption, photoluminescence, and magnetic properties.
Collapse
Affiliation(s)
- Haohao Liu
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuodong Wang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengfan Huang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qilong Bian
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kun Yang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Wenhuan Yao
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Yan Y, Huang M, Wang Y, He D, He J. M-Ni-Co MOF (M=Zn, Fe, Mn) for high-performance supercapacitors by adjusting its morphology. Heliyon 2024; 10:e25586. [PMID: 38439860 PMCID: PMC10909646 DOI: 10.1016/j.heliyon.2024.e25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Metal-organic frameworks (MOF) have been wildly synthesised and studied as electrode materials for supercapacitors, and bimetallic MOF of Ni and Co has been broadly studied to enhance both specific capacitance and stability of supercapacitors. Herein, a best performance (about 320 F/g) of Ni-Co bimetallic MOF was found in a uniform preparation condition by adjusting the ratio of Ni to Co. Then tiny third metal ion was introduced, and we found that the morphology of material has a significant change on the original basis. Furthermore, certain ions (Zn, Fe, Mn) introduced make a huge improvement in capacitance based on Ni-Co MOF of 320 F/g. The result shows that Zn-Ni-Co MOF, Fe-Ni-Co MOF and Mn-Ni-Co MOF perform specific capacitance of 1135 F/g, 870 F/g and 760F/g at 1 A/g, respectively. Meanwhile, the asymmetric supercapacitor (ASC) was constructed by Zn-Ni-Co MOF as positive electrode and active carbon (AC) as negative electrode. The Zn-Ni-Co MOF//AC ASC possesses a energy density of 58 Wh/kg at a power density of 775 W/kg. This research provides a new methods to regulate the morphology of MOF and a novel viewpoint for assembling high-performance, low-price, and eco-friendly green energy storage devices.
Collapse
Affiliation(s)
- Yige Yan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Mohan Huang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiaqi He
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Zhou Y, Chen Y, Liu L, Zhao Q, Jiang T. Design and preparation of three-dimensional core-shell structures CF@Cu-BDC@NiCo-LDH for high-performance battery-type supercapacitors and oxygen evolution reaction. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Huang M, Zhao K, Bai Z, He D, He J, Wang Y. Both MOFs-derived Fe-Co-Ni ternary hydroxide positive and Fe2O3/reduced graphene oxide negative electrode for asymmetric supercapacitors. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yang Z, Niu H, Yu F, Xie X, Qian K, Bian K, Xiang M, Dong S. Manganese and cobalt bimetallic-doped Prussian blue analogs as a bifunctional electrocatalyst for zinc-air batteries. J Colloid Interface Sci 2022; 628:588-596. [DOI: 10.1016/j.jcis.2022.07.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
|
7
|
Xie M, Zhou M, Zhang Y, Du C, Chen J, Wan L. Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2022; 608:79-89. [PMID: 34626998 DOI: 10.1016/j.jcis.2021.09.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Transition metal phosphides hold great promise for high performance battery-type electrode materials due to their superb electrical conductivity and high theoretical capacity. Unfortunately, the electrochemical properties of single metal or bimetallic phosphides are unsatisfactory owing to their low energy density and poor cyclic stability, and one feasible approach is to introduce heteroatoms to form trimetallic phosphides. Here, novel Fe-Co-Ni-P nanosheet arrays are in situ synthesized on a flexible carbon cloth substrate via an electrodeposition method followed by a phosphorization treatment. Due to the presence of abundant redox active sites, large specific surface area with mesoporous channels, desirable electrical conductivity, modified electronic structure, and synergistic effect of Fe, Co, and Ni ions, the as-prepared Fe-Co-Ni-P electrode displays significantly enhanced electrochemical performance when compared to bimetallic phosphides Fe-Co-P and Fe-Ni-P. Remarkably, the Fe-Co-Ni-P electrode exhibits a large specific capacity of 593.0 C g-1 at 1 A g-1, exceptional rate performance (80.3% capacity retention at 20 A g-1), and good cycling stability (84.2% capacity retention after 5000cycles). Besides, an asymmetric supercapacitor device with Fe-Co-Ni-P electrode as a positive electrode and a hierarchical porous carbon as a negative electrode shows a high energy density of 57.1 Wh kg-1 at a power density of 768.5 W kg-1 as well as excellent cyclability with 88.4% of initial capacity after 10,000cycles. This work manifests that the construction of trimetallic phosphides is an effective strategy to solve the shortcomings of single or bimetallic phosphides for high-performance supercapacitors.
Collapse
Affiliation(s)
- Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Meng Zhou
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
8
|
Hu Q, Qin J, Wang XF, Ran GY, Wang Q, Liu GX, Ma JP, Ge JY, Wang HY. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front Chem 2021; 9:786970. [PMID: 34912785 PMCID: PMC8666423 DOI: 10.3389/fchem.2021.786970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao-Feng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jian-Ping Ma
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.,School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
9
|
Wang Y, Zhang Y, Du C, Chen J, Tian Z, Xie M, Wan L. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors. Dalton Trans 2021; 50:17181-17193. [PMID: 34782904 DOI: 10.1039/d1dt03196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal phosphide electrodes, particularly those with unique morphologies and micro-/nanostructures, have demonstrated desirable capabilities for hybrid supercapacitor applications by virtue of their superior electrical conductivity and high electrochemical activity. Here, three-dimensional hierarchical CoFeP@nickel-manganese sulfide nanoarrays were in situ constructed on a flexible carbon cloth via a hydrothermal method, a phosphorization process, followed by an electrodeposition approach. In this smart nanoarchitecture, CoFeP nanorods grown on carbon cloth act as the conductive core for rapid electron transfer, while the nickel-manganese sulfide nanosheets decorated on the surface of CoFeP serve as the shell for efficient ion diffusion, forming a stable core-shell heterostructure with enhanced electrical conductivity. Benefiting from the synergy of the two components and the generation of a heterointerface with a modified electronic structure, The CoFeP@nickel-manganese sulfide electrodes deliver a high capacity of 260.7 mA h g-1 at 1 A g-1, excellent rate capability, and good cycling stability. More importantly, an aqueous hybrid supercapacitor based on CoFeP@nickel-manganese sulfide as a positive electrode and a lotus pollen-derived hierarchical porous carbon as a negative electrode is constructed to display a maximum energy density of 60.1 W h kg-1 at 371.8 W kg-1 and a good cycling stability of 85.7% capacitance retention after 10 000 cycles.
Collapse
Affiliation(s)
- Yameng Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhengfang Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Liu Wan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|