1
|
Chai H, Luo J, Li J, Zhong Y, Zhang L, Feng X, Xu H, Mao Z. Lightweight and robust cellulose/MXene/polyurethane composite aerogels as personal protective wearable devices for electromagnetic interference shielding. Int J Biol Macromol 2024; 271:132435. [PMID: 38759856 DOI: 10.1016/j.ijbiomac.2024.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.
Collapse
Affiliation(s)
- Hongbin Chai
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Luo
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Li H, Yang Y, Mu M, Feng C, Chuan D, Ren Y, Wang X, Fan R, Yan J, Guo G. MXene-based polysaccharide aerogel with multifunctional enduring antimicrobial effects for infected wound healing. Int J Biol Macromol 2024; 261:129238. [PMID: 38278388 DOI: 10.1016/j.ijbiomac.2024.129238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Wound infection is a predominant etiological factor contributing to delayed wound healing in open wounds. Hence, it holds paramount clinical significance to devise wound dressings endowed with superior antibacterial properties. In this study, a Schiff base-crosslinked aerogel comprising sodium alginate oxide (OSA), carboxymethyl chitosan (CMCS), and Nb2C@Ag/PDA (NAP) was developed. The resultant OSA/CMCS-Nb2C@Ag/PDA (OC/NAP) composite aerogel exhibited commendable attributes including exceptional swelling characteristics, porosity, biocompatibility, and sustained antimicrobial efficacy. In vitro antimicrobial assays unequivocally demonstrated that the OC/NAP composite aerogel maintained nearly 100 % inhibition of Staphylococcus aureus and Escherichia coli under an 808 nm laser even after 25 h. Crucially, the outcomes of in vivo infected wound healing experiments demonstrated that the wound healing rate of the OC/NAP composite aerogel group reached approximately 100 % within a span of 14 days, which was significantly greater than that of the blank control group. In vitro and in vivo hemostatic experiments also revealed that the composite aerogel had excellent hemostatic properties. The results of this study demonstrate the remarkable potential of OC/NAP aerogel as a multifunctional clinical wound dressing, especially for infected wounds.
Collapse
Affiliation(s)
- Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Di Chuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangmei Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Wang
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Gao L, Huang Y, Zhang S, Chen Y, Yan S, Dai H, Zeng B. Mxene quantum dots bipolar electrochemiluminescent platform for hepatitis C virus envelope protein E2 detection. Talanta 2024; 268:125301. [PMID: 37922818 DOI: 10.1016/j.talanta.2023.125301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
A burgeoning diversified closed bipolar electrochemiluminescent (d-BPE-ECL) based on photothermal amplification biosensor via the thermophysical and photochemical properties of niobium carbide Mxene quantum dots (Nb2C MQDs) has been proposed. The device consists of three components: separated intermediate recognition, cathodic catalytic hydrogen evolution reaction (HER) and anodic ECL response channel. Wherein, the recognition compartment was innovatively designed as a temperature-sensitive conductivity modulated interface, and the introduction of photothermal material PDA@Nb2C MQDs through target mediated rolling circle amplification strategy increases the interface temperature under near-infrared light radiation, thereby enhancing the BPE current and leading to the amplification of the anode ECL signal of Nb2C MQDs. In addition, MoS2@Ni-Cu-P features excellent electrocatalytic activity, which can promote HER and thus accelerate electron transfer, further amplifying the ECL signal. Therefore, a highly sensitive d-BPE-ECL biosensor for hepatitis C virus envelope protein E2 detection with a linear range from 10-4 to 10 ng/mL and detection limit of 3.3 × 10-5 ng/mL was obtained. This work is expected to provide a new direction for exploring BPE multiple signal amplification strategy and broaden the application of BPE-ECL in bioassays.
Collapse
Affiliation(s)
- Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Yanjie Chen
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Shanshan Yan
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Baoshan Zeng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
5
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Patil SA, Rodríguez-Berríos RR, Chavez-Flores D, Wagle DV, Bugarin A. Recent Advances in the Removal of Radioactive Iodine and Iodide from the Environment. ACS ES&T WATER 2023; 3:2009-2023. [PMID: 37614778 PMCID: PMC10443936 DOI: 10.1021/acsestwater.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Iodine (I2) in the form of iodide ions (I-) is an essential chemical element in the human body. Iodine is a nonmetal that belongs to the VIIA group (halogens) in the periodic table. Over the last couple of centuries, the exponential growth of human society triggered by industrialization coincided with the use of iodine in a wide variety of applications, including chemical and biological processes. However, through these processes, the excess amount of iodine eventually ends up contaminating soil, underground water, and freshwater sources, which results in adverse effects. It enters the food chain and interferes with biological processes with serious physiological consequences in all living organisms, including humans. Existing removal techniques utilize different materials such as metal-organic frameworks, layered double hydroxides, ion-exchange resins, silver, polymers, bismuth, carbon, soil, MXenes, and magnetic-based materials. From our literature survey, it was clear that absorption techniques are the most frequently experimented with. In this Review, we have summarized current advancements in the removal of iodine and iodide from human-made contaminated aqueous waste.
Collapse
Affiliation(s)
- Siddappa A Patil
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States; Centre for Nano and Material Sciences, Jain University, Kanakapura 562112, India
| | - Raúl R Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, United States
| | - David Chavez-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | - Durgesh V Wagle
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| |
Collapse
|
7
|
Liu W, Yu Y, Cheng W, Wang X, Zhou M, Xu B, Wang P, Wang Q. D-A Structured High-Performance Photothermal/Photodynamic Thionin-Synthetic Melanin Nanoparticles for Rapid Bactericidal and Wound Healing Effects. Adv Healthc Mater 2023; 12:e2203303. [PMID: 37023477 DOI: 10.1002/adhm.202203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 04/08/2023]
Abstract
Synthesized melanin nanoparticles (SMNPs) are used as advanced photothermal materials. However, their internal structures are complex and disordered, and tuning the photothermal performance of nanoparticles is still a hot spot of concern. This article presents thionin (Th)-doped SMNPs, namely Th-SMNPs, which are the first SMNPs formed using the one-pot polymerization of Th with Levodopa. Th can undergo Michael addition and Schiff base reaction between indole dihydroxy/indolequinone and their oligomers to form donor-acceptor pairs in the structure to modulate the photothermal performance of SMNPs. Structural and spectroscopic analyses and density functional theory simulations further confirm the existence of the donor-acceptor structure. Th-SMNPs exhibit excellent total photothermal efficiency (34.49%) in the near-infrared region (808 nm), which is a 60% improvement compared to SMNPs. This allows Th-SMNPs to exhibit excellent photothermal performance at low power 808 nm laser irradiation. Meanwhile, Th not only enhances the photothermal properties of SMNPs, but also imparts photodynamic effects to SMNPs. Th-SMNPs can produce 1 O2 under 660 nm laser irradiation. A dual-function photothermal and photodynamic textile named Th-SMNPs@cotton is constructed based on Th-SMNPs, which can act as a rapid photothermal/photodynamic sterilization and is promising for wound healing treatment of bacterial infections under low-power dual laser irradiation.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
8
|
Zhou Y, Deng G, She H, Bai F, Xiang B, Zhou J, Zhang S. Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration. Regen Ther 2023; 23:25-36. [PMID: 37063095 PMCID: PMC10091039 DOI: 10.1016/j.reth.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Introduction The repair of bone defects is ideally accomplished with bone tissue engineering. Recent studies have explored the possibility of functional modification of scaffolds in bone tissue engineering. We prepared an SF-CS-nHA (SCN) biomimetic bone scaffold and functionally modified the scaffold material by adding a polydopamine (PDA) coating loaded with exosomes (Exos) of marrow mesenchymal stem cells (BMSCs). The effects of the functional composite scaffold (SCN/PDA-Exo) on BMSC proliferation and osteogenic differentiation were investigated. Furthermore, the SCN/PDA-Exo scaffolds were implanted into animals to evaluate their effect on bone regeneration. Methods SCN biomimetic scaffolds were prepared by a vacuum freeze-drying/chemical crosslinking method. A PDA-functionalized coating loaded with BMSC-Exos was added by the surface coating method. The physical and chemical properties of the functional composite scaffolds were detected by scanning electron microscopy (SEM), energy spectrum analysis and contact angle tests. In vitro, BMSCs were inoculated on different scaffolds, and the Exo internalization by BMSCs was detected by confocal microscopy. The BMSC proliferation activity and cell morphology were detected by SEM, CCK-8 assays and phalloidin staining. BMSC osteogenic differentiation was detected by immunofluorescence, alizarin red staining and qRT‒PCR. In vivo, the functional composite scaffold was implanted into a rabbit critical radial defect model. Bone repair was detected by 3D-CT scanning. HE staining, Masson staining, and immunohistochemistry were used to evaluate bone regeneration. Results Compared with the SCN scaffold, the SCN/PDA-Exo-functionalized composite scaffold had a larger average surface roughness and stronger hydrophilicity. In vitro, the Exos immobilized on the SCN/PDA-Exo scaffolds were internalized by BMSCs. The BMSC morphology, proliferation ability and osteogenic differentiation effect in the SCN/PDA-Exo group were significantly better than those in the other control groups (p < 0.05). The effects of the SCN/PDA-Exo functional composite scaffold on bone defect repair and new bone formation were significantly better than those of the other control groups (p < 0.05). Conclusions In this study, we found that the SCN/PDA-Exo-functionalized composite scaffold promoted BMSC proliferation and osteogenic differentiation in vitro and improved bone regeneration efficiency in vivo. Therefore, combining Exos with biomimetic bone scaffolds by functional PDA coatings may be an effective strategy for functionally modifying biological scaffolds.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, Jian Yang, 641400, China
| | - Guozhen Deng
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Hongjiang She
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Fan Bai
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Bingyan Xiang
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University(The First People's Hospital of Zunyi City), Zunyi, 563000, China
| | - Jian Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, Jian Yang, 641400, China
| | - Shuiqin Zhang
- Central Laboratory, The Second People's Hospital of Yibin, Yibin, 644000, China
- Corresponding author. Central Laboratory, The Second People's Hospital of Yibin, North Street No.96, Cuiping District, Yibin, 644000, China.
| |
Collapse
|
9
|
Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hémadi M. Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. ENVIRONMENTAL RESEARCH 2023; 216:114569. [PMID: 36244439 DOI: 10.1016/j.envres.2022.114569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.
Collapse
Affiliation(s)
- Yawen Xiao
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Ahmed S Helal
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Eva Mazario
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Alvaro Mayoral
- Universidad de Zaragoza Instituto de Nanociencia de Aragón Zaragoza, Aragon, Spain
| | | | | | - Rémi Losno
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | | | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - John S Lomas
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France.
| |
Collapse
|
10
|
Damptey L, Jaato BN, Ribeiro CS, Varagnolo S, Power NP, Selvaraj V, Dodoo‐Arhin D, Kumar RV, Sreenilayam SP, Brabazon D, Kumar Thakur V, Krishnamurthy S. Surface Functionalized MXenes for Wastewater Treatment-A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100120. [PMID: 35712023 PMCID: PMC9189136 DOI: 10.1002/gch2.202100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.
Collapse
Affiliation(s)
- Lois Damptey
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Bright N. Jaato
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Camila Silva Ribeiro
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Silvia Varagnolo
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Nicholas P. Power
- School of LifeHealth & Chemical SciencesThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Vimalnath Selvaraj
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - David Dodoo‐Arhin
- Department of Materials Science & EngineeringUniversity of GhanaP.O. Box LG 77Legon‐AccraGhana
| | - R. Vasant Kumar
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Sithara Pavithran Sreenilayam
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Dermot Brabazon
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterSRUCEdinburghEH9 3JGUK
| | | |
Collapse
|
11
|
Wang J, Dai T, Zhou Y, Mohamed A, Yuan G, Jia H. Adhesive and high-sensitivity modified Ti 3C 2T X (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J Colloid Interface Sci 2022; 613:94-102. [PMID: 35032780 DOI: 10.1016/j.jcis.2022.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Hydrogel-based wearable sensors have gained great interest on account of their huge application in human-machine interfaces, electronic skin, and healthcare monitoring. However, there are still challenges in designing hydrogel-based sensors with high stability in a wide temperature range, superior adhesion, and excellent sensitivity. Herein, sensors based on oxidized sodium alginate (OSA)/polyacrylamide (PAm)/polydopamine-Ti3C2TX (PMXene) /glycerol/water (Gly/H2O) organohydrogels were designed. The organohydrogels exhibited excellent mechanical properties (elongation at break of 1037%, tensile strength of 0.17 MPa), predominant self-healing ability (self-healing efficiency of 91%), as well as high sensing stability in a wide temperature range (from -20 to 60°C). The introduction of PDA (polydopamine) and viscous glycerin (Gly) provide organohydrogels with superior adhesion. Organohydrogels sensors demonstrated high sensitivity (Gauge Factor, GF = 2.2) due to the combination of ionic and electron conduction. Sensors could stably detect human movement under different strain levels at high and low temperatures, providing a new solution for wearable sensors in extreme conditions.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianyi Dai
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuchen Zhou
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Amel Mohamed
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Wang K, Sun X, Long B, Li F, Yang C, Chen J, Ma C, Xie D, Wei Y. Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS OMEGA 2021; 6:32327-32333. [PMID: 34870052 PMCID: PMC8638303 DOI: 10.1021/acsomega.1c05725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Biodegradable mulch films are supposed to be a prospective substitute for poly(ethylene)-based mulch films in the field of sustainable agriculture. Among them, weeding mulch films play significant roles. However, the large-scale production of weeding mulch films through the traditional high-temperature film blowing process would often cause serious pollution due to the diffusion of herbicides in the surroundings. Herein, a green and facile coating approach is developed to produce biodegradable weeding mulch films. In our strategy, a herbicide was added into a poly(vinyl alcohol) aqueous solution with dopamine in it. After the subsequent low-temperature coating procedure on a biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) film, effective weeding mulch films were obtained. The morphology, structure, and mechanical property test results revealed the robustness and stability of the coating, and the pot experiments clearly demonstrated the effective weed suppression ability of the obtained weeding films. Evidently, this strategy to produce biodegradable weeding mulch films is green and facile, exhibiting great prospects in the large-scale production of weeding mulch films and other functional biodegradable mulch films.
Collapse
Affiliation(s)
- Ke Wang
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
- Department
of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Sun
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Bibo Long
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fayong Li
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Chong Yang
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Junjia Chen
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Chunping Ma
- Guangdong-HongKong
Joint Laboratory for New Textile Materials, School of Textile Materials
and Engineering, Wuyi University, Jiangmen 529020, China
| | - Dong Xie
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yen Wei
- Department
of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
3D Cross-linked Ti 3C 2T x-Ca-SA films with expanded Ti 3C 2T x interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. J Colloid Interface Sci 2021; 610:295-303. [PMID: 34923268 DOI: 10.1016/j.jcis.2021.10.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
Ti3C2Tx, a member of the MXene, has attracted extensive interest because of its high conductivity, unique two-dimensional (2D) structure and intrinsic pseudocapacitance for supercapacitors. Flexible and freestanding Ti3C2Tx films are promising electrodes for functioned supercapacitors used in wearable and portable electronic devices. However, the severe self-restacking of 2D Ti3C2Tx nanosheets restraints their practical application. Herein, freestanding and flexible three-dimensional (3D) cross-linked Ti3C2Tx-Ca-SA (sodium alginate) films with expanded Ti3C2Tx interlayer spacing are reported. The expanded interlayer spacing allows more electrolyte ions to quickly intercalate providing more intercalation pseudocapacitance, while the 3D cross-linked microstructure ensures a continuous conductive network facilitating charges transport. Attributing to the unique structure, the Ti3C2Tx-Ca-SA film delivers an outstanding areal capacitance (633 mF cm-2 at 5 mV s-1). Meanwhile, the assembled all-solid-state pseudocapacitor shows good flexibility and capacity stability under various bending conditions. The device exhibits a high energy density up to 12.6 µWh cm-2 at the power density of 375 µW cm-2 and excellent cycling stability, which are much better than prior reported state-of-the-art supercapacitors. This research exploits a simple method to optimize the structure of MXene as state-of-the-art electrodes for high-performance flexible energy-storage devices.
Collapse
|