1
|
Yang S, Li M, He X, Li N, Wang X, Liang S, Sun Z, An H. One-Step Synthesis of NiCo-LDH@Ni(OH) 2 Heterostructure Foams on Biomass-Derived Porous Carbon for High-Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407822. [PMID: 39513217 DOI: 10.1002/smll.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Layered double hydroxides (LDHs) have attracted much attention as pseudocapacitor supercapacitor electrodes because of their high theoretical specific capacity. However, LDHs have drawbacks such as poor electrical conductivity, and their specific capacities are lower than the theoretical values. In this work, NNCLDH@OPC electrodes are constructed via in situ synthesis of heterostructure foams (NNCLDH) consisting of NiCo-LDH and Ni(OH)2 on pomelo peel-derived porous carbon (OPC) through a one-step solvothermal method using ZIF-67 as a template. Owing to the synergistic effect of the 3D nanofoam structure and the multicomponent heterostructure as well as the conductive porous carbon support, the NNCLDH/OPC exhibited ultrahigh electrochemical performance as well as excellent cycling stability: a specific capacity of 3290 F g-1 at 1 A g-1 and a capacitance retention of 77.8% after 4000 cycles at a current density of 10 A g-1. In addition, the assembled NNCLDH@OPC//OPC asymmetric supercapacitor (ASC) has a maximum energy density of 51 Wh kg-1 with a power density of 812 W kg-1 and a maximum power density of 16 kW kg-1 at a current density of 20 A g-1. These results demonstrate the significant application potential of NNCLDH/OPC composites in supercapacitor electrodes.
Collapse
Affiliation(s)
- Siwen Yang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Mengqian Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoran He
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Na Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuang Liang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhanying Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Haoran An
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
2
|
Zou J, Zou J, Li L, Chen H, Liu S, Gao Y, Huang X, Wang L, Lu L. Enhanced electrocatalytic activity in MOFs-derived 3D hollow NiCo-LDH nanocages decorated porous biochar for simultaneously ultra-sensitive electrochemical sensing of Cu 2+ and Hg 2. Talanta 2024; 279:126624. [PMID: 39089079 DOI: 10.1016/j.talanta.2024.126624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/18/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Layered double hydroxides (LDHs) have attracted significant attention due to their compositional and structural flexibility. However, it is challenging but meaningful to design and fabricate hierarchical mixed-dimensional LDHs with synergistic effects to increase the electrical conductivity of LDHs and promote the intrinsic activity. Herein, 3D hollow NiCo-LDH nanocages decorated porous biochar (3D NiCo-LDH/PBC) has been synthesized by using ZIF-67 as precursor, which was utilized for constructing electrochemical sensing platform to realize simultaneous determination of Cu2+ and Hg2+. The 3D NiCo-LDH/PBC possessed the characteristics of hollow material and three-dimensional porous material, revealing a larger surface area, more exposed active sites, and faster electron transfer, which is beneficial to enhancing its electrochemical performance. Consequently, the developed sensor displayed good performance for simultaneously detecting Cu2+ and Hg2+ with ultra-low limit of detection (LOD) of 0.03 μg L-1 and 0.03 μg L-1, respectively. The proposed sensor also demonstrated excellent stability, repeatability and reproducibility. Furthermore, the sensor can be successfully used for the electrochemical analysis of Cu2+ and Hg2+ in lake water sample with satisfactory recovery, which is of great feasibility for practical application.
Collapse
Affiliation(s)
- Jiamin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Hui Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shuwu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xigen Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
3
|
Fei J, Wei Y, Zhou Y, Ning Y, Wang Y, Jia H. Synthesis of a Porous CoS
2
‐CN/MWCNTs Composite Derived from ZIF‐67 for Electrochemical Hydrogen Storage Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Parsapour F, Moradi M, Bahadoran A. Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Adv Colloid Interface Sci 2023; 313:102865. [PMID: 36868169 DOI: 10.1016/j.cis.2023.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Over the past years, metal-organic frameworks (MOF) have been directly used as electrodes or as a precursor for MOF-derived materials in energy storage and conversion systems. In the wide range of existing MOF derivatives, MOF-derived layered double hydroxides (LDHs) are determined to be promising materials due to their unique structure and features. However, MOF-derived LDHs (MDL) materials can suffer from insufficient intrinsic conductivity and agglomeration during formation. Various techniques and approaches were designed and applied to tackle these problems, such as using ternary LDHs, ion-doping, sulphurization, phosphorylation, selenization, direct growth, and conductive substrates. All the mentioned enhancement techniques aim to create the ideal electrode materials with maximum performance. In this review, we gathered and discussed the most recent progressive advances, different synthesis methodologies, unsolved challenges, applications, and electrochemical and electrocatalytic performance of MDL materials. We hope this work will be a reliable source for future progress and synthesis of these materials.
Collapse
Affiliation(s)
- Fateme Parsapour
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Morteza Moradi
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
| | - Ashkan Bahadoran
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
5
|
Yang T, Zhang W, Wu J, Zhu S, Wang D, Lei C, Zhao Y. Synthesis of a Ni(OH)2@Cu2Se hetero-nanocage by ion exchange for advanced glucose sensing in serum and beverages. Food Chem 2023; 419:136024. [PMID: 37037132 DOI: 10.1016/j.foodchem.2023.136024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Cu2Se nanosheets were coated on the surface of Ni(OH)2 nanocages (NCs) by ion exchange driven by selenium incorporation. The resulting Ni(OH)2@Cu2Se hollow heterostructures (Ni(OH)2@Cu2Se HHSs) showed high electrical conductivity and electrocatalytic activities derived from the synergistic effects of Ni/Cu phases. These structures enhanced glucose adsorption abilities, confirmed by density function theory (DFT) calculations, and the robustness of the integrated nano-electrocatalyst. Remarkably, Ni(OH)2@Cu2Se HHSs modified electrodes excited excellent glucose sensing behavior with a wide linear range (0.001-7.5 mM), a sensitivity up to 2420.4 Μa mM-1 cm2, a low limit of detection (LOD, 0.15 μM), and fast response (less 2 s). Furthermore, Ni(OH)2@Cu2Se HHSs competently analyzed glucose in serum and beverages with good recoveries ranging from 94.4 to 103.6%. Integrating copper selenide and Ni-based materials as 3D hollow heterostructures expands the selection of electrocatalysts for sensitive glucose detection in food and biological samples.
Collapse
|
6
|
Tang J, Wang Y, Peng Y, Sun Z, Liu R, Ran F. Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2739-2750. [PMID: 36762610 DOI: 10.1021/acs.langmuir.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The attapulgite@carbon/NiCo layered double hydroxide nanocomposites based on waste adsorbents are manufactured via simple and eco-friendly calcination and hydrothermal methods, by which they would be considerable electrode materials for advanced supercapacitors. To achieve sustainable development, the spent tetracycline-loaded attapulgite can act as a cost-effective available carbon source as well as a matrix material for carbon species and NiCo layered double hydroxide simultaneously. A controlled amount of attapulgite@carbon could be used to regulate the electrochemical properties of nanocomposites. The generated electrodes possess superior electrochemical properties with a specific capacitance of 2013.8 F g-1 at 0.5 A g-1, a retention rate of 87.7% at 5 A g-1, and a cyclic stability of 64.9% for 4000 cycles at 5 A g-1. Thus, the asymmetric supercapacitor device assembled with attapulgite@carbon/NiCo layered double hydroxide nanocomposites||active carbon shows a maximum capacitance of 231.3 F g-1 at 0.5 A g-1, with a preeminent energy density of 82.2 Wh kg-1 when its power density is 4318 W kg-1. This approach would contribute to the development of supercapacitors in an efficient and effective manner, as well as provide a feasible strategy for solving tetracycline pollution and recycling waste adsorbents to achieve sustainable development.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhijiang Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
7
|
H-CoNiSe 2/NC dodecahedral hollow structures for high-performance supercapacitors. Sci Rep 2023; 13:2070. [PMID: 36746977 PMCID: PMC9902623 DOI: 10.1038/s41598-023-29398-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The synergistic effect between metal ions and increasing the surface area leads to the fabrication of supercapacitor materials with high capacities. It is predicted that transition metal selenide compounds will be ideal electrode materials for supercapacitors. However, the defects of poor conductivity and volume expansion of the compounds are fundamental problems that must be solved. In this work, we successfully synthesized the cobalt-nickel selenide nitrogen-doped carbon (H-CoNiSe2/NC) hollow polyhedral composite structure using ZIF-67 as a precursor. The CoSe2 and NiSe2 nanoparticles embedded in the NC polyhedral framework offer a wealth of active sites for the whole electrode. Moreover, the presence of the NC structure in the proposed composite can simultaneously lead to improved conductivity and reduce the volume effect created during the cycling procedure. The H-CoNiSe2/NC electrode provides high specific capacity (1131 C/g at 1.0 A/g) and outstanding cyclic stability (90.2% retention after 6000 cycles). In addition, the H-CoNiSe2/NC//AC hybrid supercapacitor delivers ultrahigh energy density and power density (81.9 Wh/kg at 900 W/kg) and excellent cyclic stability (92.1% of the initial capacitance after 6000 cycles). This study will provide a supercapacitor electrode material with a high specific capacity for energy storage devices.Please confirm the corresponding affiliation for the 'Ali A. Ensafi' author is correctly identified.Error during converting author query response. Please check the eproofing link or feedback pdf for details.
Collapse
|
8
|
Liu L, Li Y, Zhang Y, Shang X, Song C, Meng F. Ni3S2 thin-layer nanosheets coupled with Co9S8 nanoparticles anchored on 3D cross-linking composite structure CNT@MXene for high-performance asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Sheng Z, Lin X, Zhao Y, Huang L, Gao H, Wei H, Wang C, Xu D, Wang Y. Facile and Controllable Synthesis of CuS@Ni-Co Layered Double Hydroxide Nanocages for Hybrid Supercapacitors. ACS OMEGA 2022; 7:27703-27713. [PMID: 35967029 PMCID: PMC9366966 DOI: 10.1021/acsomega.2c03511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of battery-type electrode materials with hollow nanostructures for high-performance hybrid supercapacitors (HSCs) remains challenging. In this study, hollow CuS@Ni-Co layered double hydroxide (CuS-LDH) composites with distinguished compositions and structures are successfully synthesized by co-precipitation and the subsequent etching/ion-exchange reaction. CuS-LDH-10 with uniformly dispersed CuS prepared with the addition of 10 mg of CuS shows a unique hollow polyhedral structure constituted by loose nanosphere units, and these nanospheres are composed of interlaced fine nanosheets. The composite prepared with 30 mg of CuS addition (CuS-LDH-30) is composed of a hollow cubic morphology with vertically aligned nanosheets on the CuS shell. The CuS-LDH-10 and CuS-LDH-30 electrodes exhibit high specific capacity (765.1 and 659.6 C g-1 at 1 A g-1, respectively) and superior cycling performance. Additionally, the fabricated HSC delivers a prominent energy density of 52.7 Wh kg-1 at 804.5 W kg-1 and superior cycling performance of 87.9% capacity retention after 5000 cycles. Such work offers a practical and effortless route for synthesizing unique metal sulfide/hydroxide composite electrode materials with hollow structures for high-performance HSCs.
Collapse
|
10
|
Biomass-derived carbon dots regulating nickel cobalt layered double hydroxide from 2D nanosheets to 3D flower-like spheres as electrodes for enhanced asymmetric supercapacitors. J Colloid Interface Sci 2022; 616:584-594. [DOI: 10.1016/j.jcis.2022.02.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022]
|
11
|
Chen J, Yang J, Wang X, Yang D, Wang X, Zhang Y, Du Y, Wang Y, Wei Q, Wang R, Liu Y, Yang Y. Enhanced bioelectrochemical performance of microbial fuel cell with titanium dioxide-attached dual metal organic frameworks grown on zinc aluminum - layered double hydroxide as cathode catalyst. BIORESOURCE TECHNOLOGY 2022; 351:126989. [PMID: 35288269 DOI: 10.1016/j.biortech.2022.126989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, a three-step distributed feeding method was used to prepare TiO2-attached dual CoZn-metal organic frameworks growing on ZnAl-layered double hydroxide (TiO2@ZIF-67/ZIF-8@ZnAl-LDH) as cathode catalyst of microbial fuel cell (MFC). The composite material was a composite core-shell structure constructed by multi-layer coating with sheet-like ZnAl-LDH as the base, dual MOFs as the magnetic core and TiO2 as the rough surface. The composite material had crystal planes (009), (110), (101) interface. The rough surface, core-shell core and polyhedral structure of TiO2@ZIF-67/ZIF-8@ZnAl-LDH were observed. The complete distribution of Ti, Zn, Al, and Co in the material was observed and offered active sites. The contents of Ti (15.97 %), Al (5.53 %), Na (5.04 %), N (3.52%), Zn (1.47 %) were found out. TiO2@ZIF-67/ZIF-8@ZnAl-LDH was excellent in electrochemical activity and the maximum power density was 409.6 mW/m2, the stable continuous output voltage was 538.4 mV for 8 d.
Collapse
Affiliation(s)
- Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Jiaqi Yang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xuemei Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Daoxin Yang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xu Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuhui Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuru Du
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yongle Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Qingying Wei
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
12
|
Yang J, Chen J, Wang X, Yang D, Zhang Y, Wu Y, Zhao Y, Wang Y, Wei Q, Wang R, Liu Y, Yang Y. Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode. BIORESOURCE TECHNOLOGY 2022; 349:126851. [PMID: 35176464 DOI: 10.1016/j.biortech.2022.126851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In this study, a two-step simple distributed feeding method was used to prepare the core-shell nanocomposite dual metal organic frameworks (D-MOFs, TiO2@ZIF-67/ZIF-8). There were three obvious peaks (011), (112), (222) interface in D-MOFs core, which fully showed that ZIF-67/ZIF-8 crystal core was successfully synthesized. The morphology of composite material was core-shell structure with a rough surface, and Ti, Co, Zn, Al were uniformly distributed on the surface. TiO2@ZIF-67/ZIF-8 also had excellent electrochemical activity and the maximum power density of TiO2@ZIF-67/ZIF-8 microbial fuel cell (MFC) was 341.506 mW/m2, which was 1.30 times of ZIF-67/ZIF-8-MFC (262.144 mW/m2) and 2.07 times of ZIF-67-MFC (164.836 mW/m2). And the continuous output voltage of TiO2@ZIF-67/ZIF-8-MFC was 413.43 mV, which could maintain stable voltage output for 8.3 days. D-MOFs as the core of composites ensured the integrity, stability and high activity of materials; Rough TiO2 as the surface of the material provided surface area and reaction center.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Xuemei Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Daoxin Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yiwen Zhang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yiqun Wu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yongyue Zhao
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yongle Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Qingying Wei
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
13
|
A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. J Colloid Interface Sci 2022; 608:313-321. [PMID: 34626978 DOI: 10.1016/j.jcis.2021.09.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022]
Abstract
The demand for high safety lithium batteries has led to the rapid development of solid electrolytes. However, some inherent limitations of solid polymer electrolytes (SPEs) impede them achieving commercial value. In this work, a novel polyethylene oxide (PEO)-based solid electrolyte is reported. For the first time, biomaterial-based chitosan-silica (CS) hybrid particles serve as fillers, which can interact with polymer matrix to significantly improve the electrochemical performance. The optimized polymer electrolyte exhibits a maximum ion conductivity of 1.91 × 10-4 S·cm-1 at 30 °C when the mass ratio of PEO and CS is 4:1 (PCS4). All-solid-state LiFePO4|PCS4|Li cells deliver a high coulombic efficiency and stable cycling performance, remaining an excellent capacity of more than 96.2 % after 150 cycles. Furthermore, the wide electrochemical window (5.4 V) and steady interfacial stability provide the possibility for high-voltage batteries applications. NCM811|| Li cells are assembled and display reliable charge and discharge cycle properties.
Collapse
|
14
|
Honeycomb-like biomass carbon with planted CoNi 3 alloys to form hierarchical composites for high-performance supercapacitors. J Colloid Interface Sci 2022; 608:2602-2612. [PMID: 34772499 DOI: 10.1016/j.jcis.2021.10.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/02/2023]
Abstract
It is a significant challenge to combine a large pseudocapacitive material with conductive honeycomb-like carbon frameworks for long-term stable supercapacitors. Herein, hierarchical composite materials are manufactured by using biomass carbon, ZIF-67, and a mild pore former (Ni(CH3COO)2) to generate alloy-type CoNi3 nanoparticles planted into conductive honeycomb-like carbon frameworks (C@ZIF-67-T). Meanwhile, the effect of carbonization temperature on the honeycomb-like pore size and the structure of composite materials is systematically investigated. As the honeycomb-like carbon skeleton structure guarantees good ionic and electronic conductivities and a large contact area, whereas the alloy nanoparticles provide a rich redox reaction for Faradaic capacitance. Therefore, the as-obtained C@ZIF-67-600 electrode presents a remarkable specific capacitance of 1044.8 F · g-1 at 1.0 A · g-1 and an ultra-long cycling stability with 30,000 cycles at 5.0 A · g-1 in a three-electrode system. In addition, the assembled C@ZIF-67-600//activated carbon asymmetrical supercapacitor exhibit a high specific capacitance of 274.4F · g-1 at 1.0 A · g-1 and a long-term stable lifespan with a capacitance retention of 87% after 20,000 cycles at 5.0 A · g-1. Besides, the asymmetrical supercapacitor also presents a maximum energy density of 85.13 Wh · kg-1 at a power density of 750 W · kg-1. Such superior electrochemical performance demonstrate that the designed electrode material provides a promising energy storage application.
Collapse
|