1
|
Yang YF, Song ZY, Liu ZH, Gao ZW, Cai X, Huang CC, Dai PD, Yang M, Li PH, Chen SH, Huang XJ. Multi-dimensional signals coupling of simultaneous acquisition stripping current with laser-induced breakdown spectroscopy for accurate analysis of Cd(II) in coexisting Cu(II). Anal Chim Acta 2024; 1325:343121. [PMID: 39244307 DOI: 10.1016/j.aca.2024.343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Despite significant advancements in detecting Cd(II) using nanomaterials-modified sensitive interfaces, most detection methods rely solely on a single electrochemical stripping current to indicate concentration. This approach often overlooks potential inaccuracies caused by interference from coexisting ions. Therefore, establishing multi-dimensional signals that accurately reflect Cd(II) concentration in solution is crucial. RESULTS In this study, we developed a system integrating concentration, electrochemical stripping current, and laser-induced breakdown spectroscopy (LIBS) characteristic peak intensity through in-situ laser-induced breakdown spectroscopy and electrochemical integrated devices. By simultaneously acquiring multi-dimensional signals to dynamically track the electrochemical deposition and stripping processes, we observed that replacement reactions occur between Cu(II) and Cd(II) on the surface of Ru-doped MoS2 modified carbon paper electrodes (Ru-MoS2/CP). These reactions facilitate the oxidation of Cd(0) to Cd(II) during the stripping process, significantly increasing the currents of Cd(II). Remarkably, the ingenious design of the Ru-MoS2 sensitive interface allowed for the undisturbed deposition of Cu(II) and Cd(II) during the electrochemical deposition process. Consequently, our in-situ integrated device achieved accurate detection of Cd(II) in complex environments, boasting a detection sensitivity of 8606.5 counts μM⁻1. SIGNIFICANCE By coupling multi-dimensional signals from stripping current and LIBS spectra, we revealed the interference process between Cu(II) and Cd(II), providing valuable insights for accurate electrochemical analysis of heavy metal ions in complex water environments.
Collapse
Affiliation(s)
- Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Institute of Environmental Hefei Comprehensive National Science Center, Hefei, 230088, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem, And Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong-Cong Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pang-Da Dai
- Wan Jiang New Industry Technology Development Center, Tongling, 244000, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Institute of Environmental Hefei Comprehensive National Science Center, Hefei, 230088, China; Wan Jiang New Industry Technology Development Center, Tongling, 244000, China.
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem, And Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Institute of Environmental Hefei Comprehensive National Science Center, Hefei, 230088, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem, And Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
2
|
Wang K, Bai B, Luo K, Liu J, Ran F, Li Z, Wang J, Li Z, Gao F, Sun W. Stability of Multivalent Ruthenium on CoWO 4 Nanosheets for Improved Electrochemical Water Splitting with Alkaline Electrolyte. CHEMSUSCHEM 2024; 17:e202301952. [PMID: 38380968 DOI: 10.1002/cssc.202301952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Engineering low-cost electrocatalysts with desired features is vital to decrease the energy consumption but challenging for superior water splitting. Herein, we development a facile strategy by the addition of multivalence ruthenium (Ru) into the CoWO4/CC system. During the synthesis process, the most of Ru3+ ions were insinuated into the lattice of CoWO4, while the residual Ru3+ ions were reduced to metallic Ru and further attached to the interface between carbon cloth and CoWO4 sheets. The optimal Ru2(M)-CoWO4/CC exhibited superior performance for the HER with an overpotential of 85 mV@10 mA cm-2, which was much better than most of reported electrocatalysts, regarding OER, a low overpotential of 240 mV@10 mA cm-2 was sufficient. In comparison to Ru2(0)-CoWO4/CC with the same Ru mass loading, multivalence Ru2(M)-CoWO4/CC required a lower overpotential for OER and HER, respectively. The Ru2(M)-CoWO4/CC couple showed excellent overall water splitting performance at a cell voltage of 1.48 V@10 mA cm-2 for used as both anodic and cathodic electrocatalysts. Results of the study showed that the electrocatalytic activity of Ru2(M)-CoWO4/CC was attributed to the in-situ transformation of Ru/Co sites, the multivalent Ru ions and the synergistic effect of different metal species stimulated the intrinsic activity of CoWO4/CC.
Collapse
Affiliation(s)
- Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Bowen Bai
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kun Luo
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhuoqun Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jing Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zengpeng Li
- Key Laboratory of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan, 735000, China
| | - Fengyang Gao
- School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Singh AP, Ghosh S. BaRuO 3 coated Ti plate as an efficient and stable electro-catalyst for water splitting reaction in alkaline medium. Heliyon 2023; 9:e20870. [PMID: 37867895 PMCID: PMC10585303 DOI: 10.1016/j.heliyon.2023.e20870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Water splitting using an electrochemical device to produce hydrogen fuel is a green and economic approach to solve the energy and environmental crisis. The realistic design of durable electro-catalysts and their synthesis using a simplistic technique is a great challenge to produce hydrogen by water electrolysis. Herein, we report a stable highly active barium ruthenium oxide (BRO) electro-catalysts over Ti plate using a soft chemical method at low temperature. The synthesized material shows facile hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER) in alkaline medium with over-potentials of 195 mV and 300 mV, respectively at a current density of 10 mA cm-2. The excellent stability lasts for at least 24 h without any degradation for both the HER and OER at the current density of 10 mA cm-2, inferring the practical applications of the material toward production of green hydrogen energy. Certainly, the synthesized catalyst is capable adequately for the overall water splitting at a cell voltage of 1.60 V at a current density of 10 mA cm-2 with an impressive stability for at least 24 h, showing a minimum loss of potential. Thus the present work contributes to the rational design of stable and efficient electro-catalysts for overall water splitting reaction in alkaline media.
Collapse
Affiliation(s)
- Alok Pratap Singh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Susanta Ghosh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
4
|
Li Q, Gao Y, Liu M, Xiao W, Xu G, Li Z, Liu F, Wang L, Wu Z. Ultrafast synthesis of halogen-doped Ru-based electrocatalysts with electronic regulation for hydrogen generation in acidic and alkaline media. J Colloid Interface Sci 2023; 646:391-398. [PMID: 37207421 DOI: 10.1016/j.jcis.2023.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Developing a facile and time-saving method for preparing hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts can accelerate the practical applications of hydrogen energy. In this study, halogen (X = F, Cl, Br and I) doped Ru-RuO2 on carbon cloth (CC) (X-Ru-RuO2/MCC) was synthesized via an ultrafast microwave-assisted method for 30 s. Particularly, the doped Br (Br-Ru-RuO2/MCC) significantly improved the electrocatalytic performances of the catalyst through the regulation of electronic structures. Then, the Br-Ru-RuO2/MCC catalyst featured HER overpotentials of 44 mV and 77 mV in 1.0 M KOH and 0.5 M H2SO4, and the OER overpotential of 300 mV at 10 mA cm-2 in 1.0 M KOH. This study provides a novel method for developing of halogen-doped catalysts.
Collapse
Affiliation(s)
- Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Yuxiao Gao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Mengzhen Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Guangrui Xu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| |
Collapse
|
5
|
Zhu Y, Yao J, Lu T, Pan Y. In-situ constructing self-supported NiO/RuO 2 heterostructure for reinforced alkaline hydrogen evolution reaction. J Colloid Interface Sci 2023; 633:32-42. [PMID: 36434933 DOI: 10.1016/j.jcis.2022.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Rationally designing a strongly coupled heterostructure with rich functional sites and high catalytic stability is essential for efficient energy conversion. This work synthesizes a self-supported NiO/RuO2 heterostructure for hydrogen production via facile dealloying following an in-situ electrochemical oxidation method. It only requires 88 ± 1 mV to drive a current density of -100 mA/cm2 in the alkaline electrolyte during hydrogen evolution reaction (HER), outperforming NiO, RuO2, and Pt foil. The higher anodic potential applied to the dealloyed ribbons results in lower overpotentials and faster reaction kinetics. Meanwhile, the catalytic activity and stability of the individual NiO can be significantly improved once coupled with a small amount of heterogeneous RuO2. The strong synergistic effect between NiO and RuO2 contributes to exposing abundant active sites, optimizing electronic structure, facilitating charge transfer at the interface, and most importantly, maintaining structural stability. These advantages make the self-supported NiO/RuO2 heterostructure a promising candidate for replacing the Pt-based catalysts.
Collapse
Affiliation(s)
- Yin'an Zhu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Jia Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Tao Lu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Ye Pan
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China.
| |
Collapse
|
6
|
Huang W, Tong Y, Feng D, Chen P. Universal strategy of iron/cobalt-based materials for boosted electrocatalytic activity of water oxidation. J Colloid Interface Sci 2023; 629:144-154. [DOI: 10.1016/j.jcis.2022.08.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
7
|
Ma J, Wang J, Liu J, Li X, Sun Y, Li R. Electron-rich ruthenium encapsulated in nitrogen-doped carbon for efficient hydrogen evolution reaction over the whole pH. J Colloid Interface Sci 2022; 620:242-252. [DOI: 10.1016/j.jcis.2022.03.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
8
|
Rezaee S, Shahrokhian S. Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. J Colloid Interface Sci 2022; 626:1070-1084. [PMID: 35839676 DOI: 10.1016/j.jcis.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 10/31/2022]
Abstract
Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure-composition-property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles doped in copper/cobalt nitride (CuCoN) encapsulated in nitrogen-doped nanoporous carbon framework (NC) (Ru/RuO2/CuCoN@NC). For the synthesize of this nanocomposite, firstly bimetallic Cu-Co/MOF hollow nanospheres are prepared via a facile emulsion-based interfacial reaction method and used as the template for Ru ion doping (Ru-doped Cu-Co/MOF). Then, Ru-doped Cu-Co/MOF precursor during the carbonization/nitridation/cooling process converted to the Ru/RuO2/CuCoN@NC nanocomposite. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, Ru/RuO2/CuCoN@NC hollow nanosphere electrocatalyst demonstrates striking catalytic performances under alkaline conditions with a current density of 10 mA cm-2at low overpotentials of 41 mV for HER and 231 mV for OER, respectively. Moreover, as a bifunctional electrocatalyst for overall water splitting, a two-electrode device needs a voltage of 1.51 V to reach a current density of 10 mA cm-2. Comprehensive electrochemical studies show that the excellent electrocatalytic performance of the Ru/RuO2/CuCoN@NC hollow nanosphere could be attributed to the improved physical and chemical properties such as desirable compositional, catalysts uniform dispersion, structural advantages of more exposed active sites, optimized electronic structure, high electrical conductivity, and interfacial synergy effect. This work paves a novel avenue for constructing robust bifunctional electrocatalyst for overall water splitting.
Collapse
Affiliation(s)
- Sharifeh Rezaee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| |
Collapse
|
9
|
Ye F, Cao Y, Han W, Yang Y, Feng Y, Liu P, Xu C, Du X, Yang W, Liu G. A RuO2IrO2 electrocatalyst with an optimal composition and novel microstructure for oxygen evolving in the single cell. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Cui H, Jiang M, Tan G, Xie J, Tan P, Pan J. The in‐situ growth of Ru modified CoP nanoflakes on carbon clothes as efficient electrocatalysts for HER. ChemElectroChem 2022. [DOI: 10.1002/celc.202101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Cui
- State Key Laboratory of Powder Metallurgy Central South University CHINA
| | - Min Jiang
- State Key Laboratory of Powder Metallurgy Central South Unversity CHINA
| | - Gang Tan
- State Key Laboratory of Powder Metallurgy Central South University CHINA
| | - Jianping Xie
- Central South University School of Minerals Processing and Bioengineering Central South University CHINA
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy Central South University CHINA
| | - Jun Pan
- Central South University State Key Laboratory of Powder Metallurgy Lushan South Street 932 410083 Changsha CHINA
| |
Collapse
|