1
|
Sathish Kumar M, Joseph A, James Raju KC, Jayavel R. Engineering multifunctionality graphene-based nanocomposites with epoxy-silane functionalized cardanol for next-generation microwave absorber. J Colloid Interface Sci 2025; 678:407-420. [PMID: 39213993 DOI: 10.1016/j.jcis.2024.08.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
As technology advances, the demand for effective microwave-absorbing materials (MAM) to mitigate electromagnetic wave interference is growing. Two-dimensional (2D) materials are increasingly favored across various fields for their high specific surface area, electrical conductivity, low density, and dielectric loss properties. This study presents lightweight nanocomposites composed of graphene nanoplatelets blended with epoxy resin (ER) and cardanol with silane-functionalized (SFC) as a toughening agent. The resulting nanocomposites exhibit a high surface roughness of 130 nm and an enhanced hydrophobicity, as evidenced by a high contact angle. Notably, the ER/SFC/GNP sample at 3 wt% (0.075 g) achieves a minimum reflection loss value of -18 dB at a thickness of 10 mm, indicating improved impedance matching and enhanced dielectric loss capability. The increasing damping factor ratio to approximately 0.95 further augments the reflection loss performance. The research aims to develop cost-effective, efficient, lightweight graphene-based nanocomposite absorbers.
Collapse
Affiliation(s)
- M Sathish Kumar
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Andrews Joseph
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), School of Physics, Central University of Hyderabad, Telangana 500046, India
| | - K C James Raju
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), School of Physics, Central University of Hyderabad, Telangana 500046, India
| | - R Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, India; Centre for Energy Storage Technologies Anna University, Chennai 600025, India.
| |
Collapse
|
2
|
Liu Y, Zhu J, Yu L, Zhao Y, Cao X, Wei S, Zeng J, Chen H, Lu Z, Chen B, Zhang G, Zhong L, Qiu Y. Electrically driven phosphorus dissolution from iron-nickel phosphate surfaces exposing highly active sites for oxygen evolution reaction. J Colloid Interface Sci 2024; 683:197-206. [PMID: 39673932 DOI: 10.1016/j.jcis.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The enhancement of catalytic activity can be achieved by removing non-active components from the surface of catalyst materials, thereby increasing the accessibility of active sites. In this study, an electrically driven method is described for the removal of non-active phosphorus (P) to optimize the surface composition of iron-nickel phosphide (denoted as P-O-NFF), resulting in the exposure of more active Fe-Ni sites for oxygen evolution reaction (OER). The optimized P-O-NFF electrode exhibits exceptional OER catalytic activity, with an overpotential of 217 mV at 10 mA cm-2. Furthermore, it demonstrates significant stability, maintaining a 100 % voltage retention rate after 300 h at a high current density of 200 mA cm-2. The superior performance can be attributed to the disruption of the original crystalline lattice during the electrically driven P dissolution, which leads to the formation of amorphous Fe-Ni hydroxide/oxyhydroxide that enhances active sites exposure. This work offers a simple and effective method for controlling the surface component of catalysts to enhance their catalytic performance, which has the potential to advance industrial water electrolysis technology.
Collapse
Affiliation(s)
- Ya Liu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Jinghui Zhu
- Shenzhen TIG Technology Co., Ltd, Shenzhen 518100, PR China
| | - Liang Yu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Yubin Zhao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Shoujing Wei
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Junrong Zeng
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Huanhui Chen
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Ziqian Lu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Binyi Chen
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China
| | - Gaowei Zhang
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| | - Liubiao Zhong
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China.
| | - Yejun Qiu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024; 11:5874-5894. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Luo K, Xu C, Du Y, Lv X, Yang X, Liu M, Zhao W, Zhang C, Lai Y, Liu Z, Che R. Multidimensional Engineering Induced Interfacial Polarization by in-Situ Confined Growth of MoS 2 Nanosheets for Enhanced Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402729. [PMID: 39077957 DOI: 10.1002/smll.202402729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Indexed: 07/31/2024]
Abstract
Interface design has enormous potential for the enhancement of interfacial polarization and microwave absorption properties. However, the construction of interfaces is always limited in components of a single dimension. Developing systematic strategies to customize multidimensional interfaces and fully utilize advantages of low-dimensional materials remains challenging. Two-dimensional transition metal dichalcogenides (TMDCs) have garnered significant attention owing to their distinctive electrical conductivity and exceptional interfacial effects. In this study, a series of hollow TMDCs@C fibers are synthesized via sacrificial template of CdS and confined growth of TMDCs embedded in the fibers. The complex permittivity of the hollow TMDCs@C fibers can be adjusted by tuning the content of CdS templates. Importantly, the multidimensional interfaces of the fibers contribute to elevating the microwave absorption performance. Among the hollow TMDCs@C fibers, the minimum reflection loss (RLmin) of the hollow MoS2@C fibers can reach -52.0 dB at the thickness of 2.5 mm, with a broad effective absorption bandwidth of 4.56 GHz at 2.0 mm. This work establishes an alternative approach for constructing multidimensional coupling interfaces and optimizing TMDCs as microwave absorption materials.
Collapse
Affiliation(s)
- Kaicheng Luo
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yiqian Du
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaofen Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Wenxuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chang Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yuxiang Lai
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
- College of Physics, Donghua University, Shanghai, 201620, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
5
|
Qian Y, Gang S, Li Y, Xiong T, Li X, Jiang Q, Luo Y, Yang J. Advanced multifunctional IGBT packing materials with enhanced thermal conductivity and electromagnetic wave absorption properties. J Colloid Interface Sci 2024; 653:617-626. [PMID: 37738934 DOI: 10.1016/j.jcis.2023.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Insulated-Gate Bipolar Transistors (IGBT) face limitations in high-frequency electronic applications due to heat accumulation and electromagnetic interference issues. To address these challenges, it is crucial to develop packing materials with excellent electromagnetic interference immunity and heat dissipation properties. In this research, a novel epoxy-based packing material (MDCF@C-ZrO2/EP) with high electromagnetic wave absorption and exceptional thermal transport properties was produced by employing a unique three-dimensional carbon structure-induced nanomaterial dispersion strategy. In particular, the three-dimensional MDCF structure effectively prevents packing agglomeration and fosters the formation of an abundant hetero-interface between MDCF and C-ZrO2, leading to improved impedance matching and enhanced electromagnetic wave dissipation capabilities. Remarkably, even at a mere 5 wt% filling level, the material demonstrates an impressive reflection loss value of -58.92 dB and a wide effective absorption bandwidth of 6.68 GHz, effectively covering the entire Ku-band. Additionally, the 3D MDCF@C-ZrO2 significantly enhances the phonon transport path and elevates the thermal conductivity of pure epoxy resin by an impressive ∼ 150%. As a result, this innovative research holds tremendous potential in enabling the application of IGBTs in high-power and high-frequency electronic components, while also contributing to the advancement of next-generation wireless communications and smart devices.
Collapse
Affiliation(s)
- Yongxin Qian
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shuangfu Gang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - You Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tianshun Xiong
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xin Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qinghui Jiang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yubo Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Junyou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Jia L, Jiang L, Hu J, Jin J, Yan S, Wu A, Zhang X. Efficient and Homogeneous Carbonitriding of High-Entropy Alloys by a Mechanochemical Process for Obtaining Coordinated Electromagnetic Matching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58651-58662. [PMID: 38073534 DOI: 10.1021/acsami.3c15623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Optimizing the impedance matching via electromagnetic adjustment is considered an effective strategy to accomplish exceptional electromagnetic wave absorption (EMA) performance. Here, we report an efficient and green process to obtain the carbonitriding FeCoNiCr high-entropy alloys (HEAs) with flake-shaped morphology by using organic cyanide (Dicyandiamide, C2H4N4) as nitrogen and carbon sources. The carbonitriding effects on the phase structure, magnetic properties, mechanical hardness, corrosion resistance, high-temperature oxidation resistance, and EMA performances were investigated systematically. The carbonitriding process optimized the impedance match by decreasing the dielectric constant via introducing the nonmetallic C and N. The #CN10 sample exhibited outstanding EMA performances with a minimum reflection loss of -32.3 dB at 7.89 GHz and a broad effective bandwidth of 4.46 GHz, which covered the majority of X-band. In addition, the carbonitriding FeCoNiCr HEAs had great mechanical properties, excellent corrosion resistance, and high-temperature oxidation resistance, indicating excellent adaptability to harsh environments as well as good EMA performances. This work provides a new idea for the preparation and design of carbonitriding EMA materials.
Collapse
Affiliation(s)
- Lei Jia
- School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China
| | - Linwen Jiang
- School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China
| | - Jiawen Hu
- School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China
| | - Jiawei Jin
- School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China
| | - Siqin Yan
- School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China
- Institute of New Materials, Guangdong Academy of Science, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou 510651, P. R. China
| | - Anhua Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Xiaofeng Zhang
- Institute of New Materials, Guangdong Academy of Science, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou 510651, P. R. China
| |
Collapse
|
7
|
Wang J, Zhang S, Liu Z, Ning T, Yan J, Dai K, Zhai C, Yun J. Graphene-like structure of bio-carbon with CoFe Prussian blue derivative composites for enhanced microwave absorption. J Colloid Interface Sci 2023; 652:2029-2041. [PMID: 37696057 DOI: 10.1016/j.jcis.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Traditional carbon materials such as graphene are often applied in the field of electromagnetic wave (EMW) absorption but they have unbalanced impedance matching and high conductivity. Bio-carbon with graphene-like structure derived from apples has many advantages over graphene: it can be prepared in large quantities and the abundant heteroatoms present in the lattice can provide many polarization phenomena. Herein, Prussian blue analogue (PBA) as a source of magnetic component was combined with bio-carbon or reduced graphene oxide (rGO) to study the EMW absorption properties. The fabricated BC/CFC-12-7 displayed performance with a minimum reflection loss (RLmin) of -72.57 dB and a wide effective absorption bandwidth (EAB) of 5.25 GHz with an ultra-thin and nearly equal matching thickness at 1.61 mm. The results show that the good EMW absorption property of bio-carbon composites comes from good conduction loss, large relaxation polarization loss especially from pyridinic-N, and better impedance matching. The optimized radar cross section is found to be -33.55 dB m2 in the far-field condition using CST. This work explored the advantages of bio-carbon as a novel EMW absorbing material compared with graphene and provided ideas for realizing high-performance EMW absorbing materials in the future.
Collapse
Affiliation(s)
- Jiahao Wang
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Simin Zhang
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Zhaolin Liu
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Tengge Ning
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China.
| | - Kun Dai
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Chunxue Zhai
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China; Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada.
| |
Collapse
|
8
|
Zheng X, Zhang H, Jiang R, Liu Z, Zhu S, Li W, Jiang L, Zhou X. Lightweight polyurethane composite foam for electromagnetic interference shielding with high absorption characteristic. J Colloid Interface Sci 2023; 649:279-289. [PMID: 37348347 DOI: 10.1016/j.jcis.2023.06.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Due to the rapid growth of electronic equipment technology, efficient electromagnetic shielding materials are needed for equipment and human protection. Among them, foam shielding materials with absorption as the primary mechanism have higher application value than highly reflective materials. Highly absorbing shielding materials can reduce the secondary pollution caused by electromagnetic wave reflection. In this study, we added Fe3O4@Polyvinyl alcohol (Fe3O4@PVA) and graphene oxide@silver (GO@Ag) into the polyurethane (PU) matrix and constructed Fe3O4@PVA and GO@Ag/PU composite foam by foaming. Fe3O4@PVA and GO@Ag form an excellent network structure in the PU foam skeleton, significantly improving its electromagnetic shielding effectiveness (EMI SE) and mechanical properties. The shielding effectiveness reached 30.9 dB with a specific EMI SE (SSE) of 274.9 dB × cm3 × g-1 at a Fe3O4@PVA filling of 7 wt%, where the electromagnetic wave absorption accounted for more than 80 % of the total EMI SE, proving absorption as the primary shielding mechanism. The results show that Fe3O4, as a ferromagnet, has both the dielectric loss of ferroelectric materials and the hysteresis loss of ferromagnetic materials in electromagnetic shielding, effectively improving the wave absorption performance of composite shielding materials. Therefore, this work provides a promising idea for efficient and lightweight wave-absorbing shielding materials in aerospace, portable electronic devices and lightweight wearable devices.
Collapse
Affiliation(s)
- Xiangyu Zheng
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haiwei Zhang
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rijia Jiang
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhihao Liu
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shanshan Zhu
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenyao Li
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Jiang
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xing Zhou
- School of Chemistry and Life sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
9
|
Wolff N, Braniste T, Krüger H, Mangelsen S, Islam MR, Schürmann U, Saure LM, Schütt F, Hansen S, Terraschke H, Adelung R, Tiginyanu I, Kienle L. Synthesis and Nanostructure Investigation of Hybrid β-Ga 2 O 3 /ZnGa 2 O 4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207492. [PMID: 36782364 DOI: 10.1002/smll.202207492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Indexed: 05/04/2023]
Abstract
The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid β-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of β-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-β-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.
Collapse
Affiliation(s)
- Niklas Wolff
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
| | - Helge Krüger
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sebastian Mangelsen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Md Redwanul Islam
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ulrich Schürmann
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Fabian Schütt
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sandra Hansen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Huayna Terraschke
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
- Academy of Sciences of Moldova, Stefan cel Mare av. 1, Chisinau, MD-2001, Moldova
| | - Lorenz Kienle
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| |
Collapse
|
10
|
Bioinspired multiple-degrees-of-freedom responsive metasurface by high-entropy-alloy ribbons with hierarchical nanostructures for electromagnetic wave absorption. J Colloid Interface Sci 2023; 636:1-10. [PMID: 36621124 DOI: 10.1016/j.jcis.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The compound eyes of the dragonfly, Pantala flavescens Fabricius, are covered by micro-scaled ocelli capable of sensing polarized light, an attractive property for radar stealth and counterreconnaissance. In this work, we fabricated biomimetic electromagnetic wave absorption materials (EAMs) by analyzing the covert information identifications of biological systems and focusing on the design of metastructures and microstructures. Several bionic metasurfaces with anisotropic double-V meta atoms made up of (FeCoNiSi8.9Al8.9)C0.2 high-entropy-alloy (HEA) ribbons for multiple-degrees-of-freedom recognition and broadband absorption are presented. The covert phase, amplitude, and angular momentum of electromagnetic waves were controlled and recognized as information by manipulating the rotation angle θ of meta atoms. A vortex wave with a topological charge of 1 was generated to recognize linearly polarization and left- and right-handed circular polarization. In addition, the polarization conversion enhanced absorption. The hierarchical nanostructures of HEA ribbons give rise to suitable electromagnetic loss and a superior impedance match. Finally, inspired by the structure of compound eyes, the designed multilayer metamaterials realized effective absorption (reflection loss (RL) ≤ - 10 dB) within the 4.5-18 GHz regime under 2.8 mm thickness. These materials provide evidence for a new way for integrated EAMs and metamaterials.
Collapse
|
11
|
Yan J, Wang Y, Liu W, Liu P, Chen W. Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption. J Colloid Interface Sci 2023; 643:318-327. [PMID: 37075540 DOI: 10.1016/j.jcis.2023.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Functional two-dimensional (2D) graphene-like carbon has the potential to be a good electromagnetic wave absorbing material due to its good electronic properties, but the preparation of 2D carbon via metal-organic frameworks (MOFs) derivation method is still a bottleneck. Herein, we fabricated ultrathin nitrogen-doped graphene-like carbon nanomesh (N-GN) via thermal exfoliation of 2D MOF (Zn-ZIF-L) directly. The species of the chloride salt that exfoliated Zn-ZIF-L have an effect on the nitrogen content, graphitization degree, pore size and specific surface area of N-GN. The Zn-ZIF-L derived N-GN exfoliated by KCl and LiCl simultaneously has the optimum reflection loss of -54 dB only with the thickness of 2.1 mm and the filler loading of 3 wt%. The excellent electromagnetic wave absorbing property is attributed to its favorable structure, micro-meso-macropores, N heteroatoms, abundant heterogeneous graphene-like carbon nanomesh interfaces and defects. Our simple and low-cost preparation process facilitates the large-scale production and application for electromagnetic wave absorbing material of functionalized graphene-like carbon.
Collapse
Affiliation(s)
- Jing Yan
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China
| | - Wenjie Liu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China
| | - Panbo Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.
| |
Collapse
|
12
|
Wu M, Wang H, Liang X, Wang D. Optimized electromagnetic wave absorption of α-Fe 2O 3@MoS 2nanocomposites with core-shell structure. NANOTECHNOLOGY 2023; 34:145703. [PMID: 36563351 DOI: 10.1088/1361-6528/acae29] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Core-shell structures and interfacial polarization are of great significance to meet the diversified requirements of microwave attenuation. Herein,α-Fe2O3@MoS2nanocomposites are fabricated via a simple two-step hydrothermal process, in which MoS2nanosheets as the shell are self-assembled andα-Fe2O3microdrums are used as the core to constitute a special flower-like morphology with core-shell structure. This structure can provide more interface contact to achieve strong interfacial polarization and possibly offer more multiple reflection and scattering of electromagnetic waves. Furthermore, the microwave dissipation performances ofα-Fe2O3@MoS2nanocomposites can be significantly improved through construction of core-shell structure and flower-like morphology, controlling the content ofα-Fe2O3microdrums and adjusting the filler loading ratios. This work proves that the as-synthesized nanocomposites achieve excellent effective absorption bandwidth and outstanding electromagnetic wave absorption capabilities due to their special interfaces, core-shell structures and good impedance matching conditions. Therefore,α-Fe2O3@MoS2nanocomposites are expected to be a novel and desirable candidate for high-performance electromagnetic wave absorbers.
Collapse
Affiliation(s)
- Mei Wu
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Hongchang Wang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Xiaohui Liang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Dunhui Wang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
13
|
Rao Y, Qi X, Peng Q, Chen Y, Gong X, Xie R, Zhong W. Flower-like NiO to flower-like NiO/Ni@C microspheres: An effective strategy to comprehensively improve the loss capabilities. J Colloid Interface Sci 2023; 629:981-993. [DOI: 10.1016/j.jcis.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
|
14
|
Di J, Duan Y, Pang H, Jia H, Liu X. Two-Dimensional Basalt/Ni Microflakes with Uniform and Compact Nanolayers for Optimized Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51545-51554. [PMID: 36318616 DOI: 10.1021/acsami.2c15916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It has been accepted that the uniform distribution of magnetic metal particles is beneficial to microwave absorption, while why the homogeneous magnetic particles on the dielectric substrate improve the electromagnetic loss is still unclear. Herein, metal Ni nanoparticles, two-dimensional (2D) basalt/scattered Ni, and basalt/uniform Ni microflakes are obtained through a pretreatment and electroless deposition process. In comparison to Ni nanoparticles and basalt/scattered Ni, the basalt/Ni microflakes with largely uniform and compact Ni nanolayers on basalt, breaking the percolation limit, are favorable for enhanced electromagnetic attenuation. The Ni nanolayers are convenient for construction of a microscale conductive net and migration of an electron. The 2D heterostructures constructed by basalt substrates and decorated Ni layers boost multiple scattering absorption and promote interfacial polarization. Meanwhile, exposed Ni does not inhibit magnetic resonance, enabling strong magnetic coupling. Consequently, the basalt/Ni microflakes with uniform Ni nanolayers demonstrate better microwave absorption with a minimum reflection loss of -30 dB and an effective absorption bandwidth of 3 GHz at 1 mm. This work shows that the uniform and compact magnetic metal nanolayers are effective in improving the dielectric loss and magnetic loss simultaneously to achieve the high-performance microwave absorption.
Collapse
Affiliation(s)
- Jingru Di
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116085, People's Republic of China
| | - Yuping Duan
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116085, People's Republic of China
| | - Huifang Pang
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116085, People's Republic of China
| | - Hanxiao Jia
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116085, People's Republic of China
| | - Xiaoji Liu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116085, People's Republic of China
| |
Collapse
|
15
|
Owais M, Shiverskii A, Pal AK, Mahato B, Abaimov SG. Recent Studies on Thermally Conductive 3D Aerogels/Foams with the Segregated Nanofiller Framework. Polymers (Basel) 2022; 14:polym14224796. [PMID: 36432922 PMCID: PMC9695331 DOI: 10.3390/polym14224796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
As technology advances toward ongoing circuit miniaturization and device size reduction followed by improved power density, heat dissipation is becoming a key challenge for electronic equipment. Heat accumulation can be prevented if the heat from electrical equipment is efficiently exported, ensuring a device's lifespan and dependability and preventing otherwise possible mishaps or even explosions. Hence, thermal management applications, which include altering the role of aerogels from thermally insulative to thermally conductive, have recently been a hot topic for 3D-aerogel-based thermal interface materials. To completely comprehend three-dimensional (3D) networks, we categorized and comparatively analyzed aerogels based on carbon nanomaterials, namely fibers, nanotubes, graphene, and graphene oxide, which have capabilities that may be fused with boron nitride and impregnated for better thermal performance and mechanical stability by polymers, including epoxy, cellulose, and polydimethylsiloxane (PDMS). An alternative route is presented in the comparative analysis by carbonized cellulose. As a result, the development of structurally robust and stiff thermally conductive aerogels for electronic packaging has been predicted to increase polymer thermal management capabilities. The latest trends include the self-organization of an anisotropic structure on several hierarchical levels within a 3D framework. In this study, we highlight and analyze the recent advances in 3D-structured thermally conductive aerogels, their potential impact on the next generation of electronic components based on advanced nanocomposites, and their future prospects.
Collapse
Affiliation(s)
- Mohammad Owais
- Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence: (M.O.); (S.G.A.)
| | - Aleksei Shiverskii
- Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Amit Kumar Pal
- Center for Energy Science & Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Biltu Mahato
- Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sergey G. Abaimov
- Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence: (M.O.); (S.G.A.)
| |
Collapse
|
16
|
Cui C, Bai W, Jiang S, Wang W, Ren E, Xiao H, Zhou M, Zhang J, Hu J, Cheng C, Guo R. FeNi LDH/Loofah Sponge-Derived Magnetic FeNi Alloy Nanosheet Array/Porous Carbon Hybrids with Efficient Electromagnetic Wave Absorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Hu
- Yibin Jinyuan Composite Material Co., Ltd., Yibin 644002, China
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds LS29JT, U.K
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| |
Collapse
|
17
|
Liu X, Duan Y, Guo Y, Pang H, Li Z, Sun X, Wang T. Microstructure Design of High-Entropy Alloys Through a Multistage Mechanical Alloying Strategy for Temperature-Stable Megahertz Electromagnetic Absorption. NANO-MICRO LETTERS 2022; 14:142. [PMID: 35809143 PMCID: PMC9271152 DOI: 10.1007/s40820-022-00886-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Developing megahertz (MHz) electromagnetic wave (EMW) absorption materials with broadband absorption, multi-temperature adaptability, and facile preparation method remains a challenge. Herein, nanocrystalline FeCoNiCr0.4Cu0.2 high-entropy alloy powders (HEAs) with both large aspect ratios and thin intergranular amorphous layers are constructed by a multistage mechanical alloying strategy, aiming to achieve excellent and temperature-stable permeability and EMW absorption. A single-phase face-centered cubic structure with good ductility and high crystallinity is obtained as wet milling precursors, via precisely controlling dry milling time. Then, HEAs are flattened to improve aspect ratios by synergistically regulating wet milling time. FeCoNiCr0.4Cu0.2 HEAs with dry milling 20 h and wet milling 5 h (D20) exhibit higher and more stable permeability because of larger aspect ratios and thinner intergranular amorphous layers. The maximum reflection loss (RL) of D20/SiO2 composites is greater than - 7 dB with 5 mm thickness, and EMW absorption bandwidth (RL < - 7 dB) can maintain between 523 and 600 MHz from - 50 to 150 °C. Furthermore, relying on the "cocktail effect" of HEAs, D20 sample also exhibits excellent corrosion resistance and high Curie temperature. This work provides a facile and tunable strategy to design MHz electromagnetic absorbers with temperature stability, broadband, and resistance to harsh environments.
Collapse
Affiliation(s)
- Xiaoji Liu
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China
| | - Yuping Duan
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China.
| | - Yuan Guo
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, People's Republic of China
| | - Huifang Pang
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China
| | - Zerui Li
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China
| | - Xingyang Sun
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China
| | - Tongmin Wang
- Key Laboratory of Solidification Control and Digital Preparation Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116085, People's Republic of China.
| |
Collapse
|
18
|
Zhang X, Fan Y, Wang J, Xian G, Liu Z, Xie A, Wang Y, Li J, Liu Y, Gao J, Kong LB. Synergistic effect of niobium oxide and cobalt on electromagnetic properties of dodecahedron-carbon composites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Controlled fabrication of core–shell γ-Fe2O3@C–Reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J Colloid Interface Sci 2022; 615:685-696. [DOI: 10.1016/j.jcis.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
|
20
|
Wang L, Zhu S, Zhu J. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J Colloid Interface Sci 2022; 624:423-432. [PMID: 35667204 DOI: 10.1016/j.jcis.2022.05.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
Rational design of porous carbon architecture is essential for superior microwave absorbing performance. Herein, we report a new type of hollow porous Co/C polyhedral nanocages with ordered macropores of ∼60 nm (HP-Co/C) as microwave absorber, which were readily manufactured by epitaxial growth of ZIF-67/SiO2 nanolayers on the surfaces of polyhedral ZIF-8 nanoparticle, and followed by simple calcination in Ar atmosphere and subsequent removal of SiO2 with HF. The ordered macropores can effectively tune the electromagnetic parameters of HP-Co/C, affording the obtained HP-Co/C composites strong attenuation capability and excellent impedance matching characteristics for electromagnetic wave (EMW) absorption. As a result, the reflection loss (RL) and effective absorption bandwidth (EAB) of HP-Co/C prepared under pyrolysis temperature of 600 °C can reach up to -66.5 dB and 8.96 GHz, respectively, at filler fraction of only 15 wt%. Together, this study offers a new design philosophy to make lightweight and broadband microwave absorbent and can be extended to other types of microwave absorbers, significantly enriching the categories of the efficient microwave absorbing materials.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuheng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - JianFeng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
21
|
He M, Liao Q, Zhou Y, Song Z, Wang Y, Feng S, Xu R, Peng H, Chen X, Kang Y. Lightweight TiO 2@C/Carbon Fiber Aerogels Prepared from Ti 3C 2T x/Cotton for High-Efficiency Microwave Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:945-956. [PMID: 35019654 DOI: 10.1021/acs.langmuir.1c02237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon fiber aerogel (CFA) derived from cotton wool as a potential microwave absorbing material has received intensive attention owing to the low density, high conductivity, large surface area, and low cost, but its applications are limited by the relatively high complex permittivity. To solve this problem, TiO2@C (derived from Ti3C2Tx) is introduced into CFA to prepare lightweight TiO2@C/CFA composites based on electromagnetic (EM) parameter optimization and enhanced EM wave attenuation performance. The microwave absorption capacity of TiO2@C/CFA-2 composite is obviously better than that of CFA. It is confirmed that good impedance matching derived from the combination of TiO2@C and CFA is the main factor to achieve excellent microwave absorption. Moreover, the improved microwave absorption capabilities are closely related to multiple EM wave absorbing mechanisms including multiple reflections and scattering, dipolar and interfacial polarization, and conductivity loss. TiO2@C/CFA-2 possesses a maximum reflection loss (RL) of -43.18 dB at a low response frequency of 6.0 GHz. As the matching thickness is less than 2.0 mm, the maximum RL values can still exceed -20 dB, and at the same time, the wide effective absorption bandwidth (EAB) below -10 dB achieves 4.36 GHz at only 1.9 mm thickness. Our work confirms that the lightweight and high-performance TiO2@C/CFA composites are promising choices and offer a new approach to design and construct carbon-based microwave absorbents derived from biomass.
Collapse
Affiliation(s)
- Man He
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qiang Liao
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yongjuan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Shuangjiang Feng
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Ran Xu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Hao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Xi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| | - Yifan Kang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China
| |
Collapse
|
22
|
Geng H, Zhang X, Xie W, Zhao P, Wang G, Liao J, Dong L. Lightweight and broadband 2D MoS 2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 609:33-42. [PMID: 34894554 DOI: 10.1016/j.jcis.2021.11.192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) porous molybdenum disulfide nanosheets/carbon nanofibers (MoS2/CNF) hybrid aerogels were synthesized by using solvothermal method and following carbonization, where two-dimensional (2D) MoS2 nanosheets were homogenously in-situ grown on the interconnected CNF skeleton derived from bacterial cellulose, forming a hierarchical porous structure. This unique heterogeneous structure of the MoS2/CNF hybrid aerogels were conducive to electromagnetic loss, including conduction, polarization, multi-scatterings, and reflections, thus resulting in a balanced impedance matching and microwave attenuation capacity. It was found that the resulted MoS2/CNF hybrid aerogels demonstrate excellent microwave absorbing performance when the only 5.0 wt% fillers were loaded in paraffin. Particularly, MoS2/CNF-2-900 hybrid aerogel displayed an effective absorption bandwidth of 5.68 GHz and minimum reflection loss (RLmin) value of -36.19 dB at a thickness of 2.0 mm. As the thickness increases to 4.4 mm, the RLmin value of MoS2/CNF-2-900 hybrid aerogel reaches -48.53 dB. Electromagnetic loss mechanism analysis indicates that such improved microwave attenuation is attributed to proper component, multiple heterogenous interface and hierarchical porous structures. All the results in this work pave the avenue for the development of ultralight microwave absorber with high absorption capacity as well as broad effective absorption bandwidth.
Collapse
Affiliation(s)
- Haoran Geng
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xuan Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenhan Xie
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Pengfei Zhao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Renmin Avenue 48, Zhanjiang 524001, China
| | - Guizhen Wang
- School of Materials Science and Engineering, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Jianhe Liao
- School of Materials Science and Engineering, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Lijie Dong
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
23
|
Wang G, Hao L, Zhang X, Tan S, Zhou M, Gu W, Ji G. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding. J Colloid Interface Sci 2021; 607:89-99. [PMID: 34492357 DOI: 10.1016/j.jcis.2021.08.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Flexible and transparent conductive films are highly desirable in some optoelectronic devices, such as smart windows, touch panels, as well as displays and electromagnetic protection field. Silver nanowire (Ag NW) has been considered as the best material to replace indium tin oxide (ITO) to fabricate flexible transparent electromagnetic interference (EMI) shielding films due to its superior comprehensive performance. However, the common substrates supporting Ag NWs require surface modification to enhance the adhesion with Ag NWs. In this work, a flexible and transparent Ag NWs EMI shielding film with sandwich structure through a facile rod-coating method, wherein Ag NWs network were embedded between biodegradable gelatin-based substrate and cover layer. The interfacial adhesion between Ag NWs and gelatin-based layers was enhanced by hydrogen-bonding interaction and swelling effect without any pretreatment. The shielding effectiveness (SE) of the G/Ag NW/G (G represents gelatin-based layer) film reaches 37.74 dB at X band with an optical transmittance of 72.0 %. What's more, the flexible gelatin-based layer and encapsulated structure endow the resultant G/Ag NW/G film integrating excellent mechanical properties, reliable durability, antioxidation, as well as anti-freezing performance. This work paves a new way for fabricating flexible transparent EMI shielding films.
Collapse
Affiliation(s)
- Gehuan Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Lele Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Xindan Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| | - Ming Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Weihua Gu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| |
Collapse
|