1
|
Ye W, Meng L, Xi J, Bian H, Xu Z, Xiao H, Zhang L, Wu W. Superelastic carbon aerogels with anisotropic and hierarchically-enhanced cellular structure for wearable piezoresistive sensors. J Colloid Interface Sci 2024; 666:529-539. [PMID: 38613975 DOI: 10.1016/j.jcis.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.
Collapse
Affiliation(s)
- Wenjie Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and Optical Engineering & College of Microelectronic, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Sam DK, Cao Y. Iron-Cobalt Nanoparticles Embedded in B,N-Doped Chitosan-Derived Porous Carbon Aerogel for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32311-32321. [PMID: 38870486 DOI: 10.1021/acsami.4c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Given their intriguing properties, porous carbons have surfaced as promising electrocatalysts for various energy conversion reactions. This study presents a unique approach where iron-cobalt (FeCo) is confined in a boron, nitrogen-doped chitosan-derived porous carbon aerogel (BNPC-FeCo) to serve as an electrocatalyst for the hydrogen evolution and oxygen evolution reactions (HER and OER). The BNPC-FeCo-900 electrocatalyst demonstrates excellent catalyst activity, with very low overpotentials of 186 and 320 mV at 10 mA cm-2, low Tafel slopes of 82 and 55 mV dec-1, and low charge transfer resistance of 2.68 and 9.25 Ω for HER and OER, respectively. Density functional theory (DFT) calculations further reveal that the cooperation between the boron, nitrogen codoped porous carbon, and the FeCo nanoparticles reduces intermediates' energy barriers, significantly enhancing the HER and OER performance. In conclusion, this work offers significant and informative perspectives into the potential of porous carbon materials as dual-purpose electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
3
|
Jin W, Nan J, Chen M, Song L, Wu F. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131273. [PMID: 36996540 DOI: 10.1016/j.jhazmat.2023.131273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.
Collapse
Affiliation(s)
- Wenxing Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langrun Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
4
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
5
|
Chen B, Zhang X, Yang J, Feng J, Wang T. Giant Negative Thermopower Enabled by Bidirectionally Anchored Cations in Multifunctional Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24483-24493. [PMID: 37161282 DOI: 10.1021/acsami.3c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The lack of high-quality ionic thermoelectric materials with negative thermopowers has stimulated scientists' broad research interest. The effective adjustment of the interaction between ions and a polymer network is an important way to achieve high-quality ion thermoelectric properties. Integrating different types of ion-polymer interactions into the same thermoelectric device seems to lead to unexpected gains. In this work, we propose a strategy for bidirectionally anchoring cations to synergistically generate a giant negative thermopower and high ionic conductivity. This is mainly achieved through synergistic ion-polymer coordination and Coulomb interactions. An ionic thermoelectric material was prepared by infiltrating a polycation electrolyte [poly(diallyldimethylammonium chloride)] with CuCl2 into the poly(vinyl alcohol)-chitosan aerogel. The confinement effect of copper-coordinated chitosan on cations, the repulsive property of the polycationic electrolyte on cations, and the unique chemical configuration of a transition metal chloride anion ([CuCl4]2-) are the fundamental guarantees for achieving a thermopower of -28.4 mV·K-1. Moreover, benefiting from the high charge density of the polycationic electrolyte, we obtain an ionic conductivity of 40.5 mS·cm-1. These findings show the application prospect of synergistic different types of ion-polymer interactions in designing multifunctional ionic thermoelectric materials.
Collapse
Affiliation(s)
- Bin Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiansong Feng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Taihong Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Jiang C, Gao M, Zhang S, Huang L, Yu S, Song Z, Wu Q. Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor. Int J Biol Macromol 2023; 225:1437-1448. [PMID: 36435468 DOI: 10.1016/j.ijbiomac.2022.11.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
To overcome the low energy density and poor conductivity of conventional electrode materials for building supercapacitor, herein, a hybrid hydrogel prepared from compositing bio-based chitosan with holey graphene oxide by microwave-assisted hydrothermal is proposed. This binary hydrogel is endowed with heteroatomic functional groups and conductive porous network by chemical pretreatments, where amides and carboxyl groups are introduced during the acylation modification of chitosan to enable it soluble in water for sufficient reaction, while the oxidation etching for graphene oxide in the defect area by H2O2 facilitates in-plane nanopores network to provide abundant active surface and short ion diffusion pathway. Benefited from the high conductivity and flexibility, this hydrogel present promising performance when used as additive-free electrode in a three-electrode, with a high specific capacitance of 377 F/g at 5 A/g. The rich nitrogen and oxygen groups on surface of the hydrogel contribute to high capacitance directly, while the in-plane nanopores and hierarchically porous network benefit to promote their wettability, accelerate the charge transfer and enhance their charge storage ability. When the hydrogel composite is adopted into a flexible solid-state supercapacitor employing lignin hydrogel electrolyte, it unfolds a specific capacitance of 210 F/g at 0.5 A/g, with an ultrahigh energy density of 31 Wh/kg at the power density of 150 W/kg. The solid-state supercapacitor exhibits promising potential in applications such as signal sensor and portable energy storage.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China
| | - Mingming Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China
| | - Shouyun Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China
| | - Lang Huang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 26101, PR China
| | - Shitao Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China
| | - Zhanqian Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China; Institute of Chemical Industry of Forest Products, CAF, PR China
| | - Qiong Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
7
|
Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohydr Polym 2023; 300:120268. [DOI: 10.1016/j.carbpol.2022.120268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
8
|
Zhang M, Xuan X, Yi X, Sun J, Wang M, Nie Y, Zhang J, Sun X. Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2721. [PMID: 35957152 PMCID: PMC9370447 DOI: 10.3390/nano12152721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Carbon aerogel (CA) based materials have multiple advantages, including high porosity, tunable molecular structures, and environmental compatibility. Increasing interest, which has focused on CAs as electrocatalysts for sustainable applications including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and CO2 reduction reaction (CO2RR) has recently been raised. However, a systematic review covering the most recent progress to boost CA-based electrocatalysts for ORR/OER/HER/CO2RR is now absent. To eliminate the gap, this critical review provides a timely and comprehensive summarization of the applications, synthesis methods, and principles. Furthermore, prospects for emerging synthesis, screening, and construction methods are outlined.
Collapse
Affiliation(s)
- Minna Zhang
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinqiang Sun
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mengjie Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yihao Nie
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
9
|
Ortega M, Gómez D, Manrique R, Reyes G, García-Sánchez JT, Baldovino Medrano VG, Jiménez R, Arteaga-Pérez LE. Reductive amination of phenol over Pd-based catalysts: elucidating the role of the support and metal nanoparticle size. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd-catalyzed reductive amination of phenol is sensitive to the support's nature, and to the atoms' coordination in palladium clusters.
Collapse
Affiliation(s)
- Maray Ortega
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
| | - Daviel Gómez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, Universidad de Concepción, Concepción, Chile
| | - Raydel Manrique
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
| | - Guillermo Reyes
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | | | - Victor Gabriel Baldovino Medrano
- Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Colombia
- Laboratorio Central de Ciencia de Superficies (SurfLab), Universidad Industrial de Santander, Colombia
| | - Romel Jiménez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, Universidad de Concepción, Concepción, Chile
| | - Luis E. Arteaga-Pérez
- Laboratory of Thermal and Catalytic Processes (LPTC), Wood Engineering Department, Faculty of Engineering, Universidad del Bio-Bio, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Coronel, Chile
| |
Collapse
|
10
|
Amer OA, Ali SS, Azab M, El-Shouny WA, Sun J, Mahmoud YAG. Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications. Int J Biol Macromol 2021; 196:35-45. [PMID: 34920076 DOI: 10.1016/j.ijbiomac.2021.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
The exploitation of chitinous materials seems to be an infinite treasure. To this end, using shellfish waste as the sole carbon/nitrogen source solves environmental challenges while lowering microbial chitinase production costs. Bioconversion of shellfish chitin wastes such as shrimp shells has recently been investigated for the production of enzymes and bioactive materials in order to maximize the utilization of chitin-containing seafood processing wastes. In this study, the bioconversion of chitin to chitosan by Alcaligenes faecalis Alca F2018 revealed the highest chitin deacetylase (CDA) activity of 40.6 U/μg. The resulted low Km and high Vmax values explain the high affinity of the purified CDA to the p-nitroacetanilide substrate. CDA with a molecular weight of 66 KDa was purified from F2018 strain, with a 14.5% yield. FT-IR revealed distinct chitosan peaks and XRD revealed that chitosan samples had lower crystallinity than chitin. TGA analysis revealed that the recovered chitosan samples were more thermally stable. The deacetylation degree percentages of the produced chitosan are in the same range as that of the commercial chitosan, suggesting the promising potential of A. faecalis Alca F2018 to utilize shrimp shells in their raw form in the fermentation media based on its CDA enzyme activity.
Collapse
Affiliation(s)
- Ohood A Amer
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha Azab
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Wagih A El-Shouny
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|