1
|
Dong Y, Ma Y, Shu A, Yan Z, Wang H, Wu Y. In-situ construction of N-doped Zn 0.6Cd 0.4S/oxygen vacancy-rich WO 3 Z-scheme heterojunction compound for boosting photocatalytic hydrogen production. J Colloid Interface Sci 2025; 678:1099-1108. [PMID: 39243476 DOI: 10.1016/j.jcis.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Photocatalytic water splitting technology for H2 production represents a promising and sustainable approach to clean energy generation. In this study, a high concentration of oxygen vacancies was introduced into tungsten trioxide (WO3) to create a vacancy-rich layer. This modified WO3 (WO3-x) was then combined with N-doped Zn0.6Cd0.4S through a hydrothermal synthesis, resulting in the formation of a Z-scheme heterojunction composite aimed at enhancing photocatalytic performance. Under visible light, the H2 production activity of the composite reached an impressive 8.52 mmol·g-1 without adding co-catalyst Pt. This corresponds to enhancements of 7.82 and 4.39 times the production yield of pure ZCS and ZCSN, respectively. However, the hydrogen production increased to 21.98 mmol·g-1 when Pt was added as a co-catalyst. Furthermore, an array of characterizations were employed to elucidate the presence of oxygen vacancies and the establishment of the Z-scheme heterojunction. This structural enhancement significantly facilitates the utilization of photo-generated electrons while effectively preventing photo-corrosion of ZCSN, thus improving material stability. Our study provides a new scheme for the incorporation of oxygen-rich vacancy and the construction of Z-scheme heterojunction, demonstrating a synergistic effect that greatly advances photocatalytic performance.
Collapse
Affiliation(s)
- Yuxin Dong
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yueting Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoqiang Shu
- Key Laboratory of Environment Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zhiyong Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hou Wang
- Key Laboratory of Environment Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
2
|
Lin S, Mandavkar R, Habib MA, Dristy SA, Joni MH, Jeong JH, Lee J. Fabrication of Ru-doped CuMnBP micro cluster electrocatalyst with high efficiency and stability for electrochemical water splitting application at the industrial-level current density. J Colloid Interface Sci 2025; 677:587-598. [PMID: 39116558 DOI: 10.1016/j.jcis.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Electrochemical water splitting has been considered as a key pathway to generate environmentally friendly green hydrogen energy and it is essential to design highly efficient electrocatalysts at affordable cost to facilitate the redox reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, a novel micro-clustered Ru/CuMnBP electrocatalyst is introduced, prepared via hydrothermal deposition and soaking-assisted Ru doping approaches on Ni foam substrate. Ru/CuMnBP micro-clusters exhibit relatively low HER/OER turnover overpotentials of 11 mV and 85 mV at 10 mA/cm2 in 1 M KOH. It also demonstrates a low 2-E turnover cell voltage of 1.53 V at 10 mA/cm2 for the overall water-splitting, which is comparable with the benchmark electrodes of Pt/C||RuO2. At a super high-current density of 2000 mA/cm2, the dual functional Ru/CuMnBP demonstrates an exceptionally low 2-E cell voltage of 3.13 V and also exhibits superior stability for over 10 h in 1 M KOH. Excellent electrochemical performances originate from the large electrochemical active surface area with the micro cluster morphology, high intrinsic activity of CuMnBP micro-clusters optimized through component ratio adjustment and the beneficial Ru doping effect, which enhances active site density, conductivity and stability. The usage of Ru in small quantities via the simple soaking doping approach significantly improves electrochemical reaction rates for both HER and OER, making Ru/CuMnBP micro-clusters promising candidates for advanced electrocatalytic applications.
Collapse
Affiliation(s)
- Shusen Lin
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea
| | - Rutuja Mandavkar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea
| | - Md Ahasan Habib
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea
| | - Sumiya Akter Dristy
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea
| | - Mehedi Hasan Joni
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea
| | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea.
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, 01897, South Korea.
| |
Collapse
|
3
|
Tang S, Zhang Z, Lv Q, Pan X, Dong J, Liu L, Wan Y, Han J, Song F. Heteroatom Engineering in Earth-Abundant Cobalt Electrocatalyst for Energy-Saving Hydrogen Evolution Coupling with Urea Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561092 DOI: 10.1021/acsami.4c11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of multifunctional electrocatalysts with high performance for electrocatalyzing urea oxidation-assisted water splitting is of great significance for energy-saving hydrogen production. In this work, we demonstrate a novel heteroatom engineering strategy for development of B-doped Co as a multifunctional electrocatalyst for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and urea oxidation reaction (UOR). Density functional theory (DFT) results suggest that a B dopant can efficiently adjust the electron reconstruction of the exposure of Co sites nearby and facilitate electron transfer, resulting in an optimal d-band center along with a lower Gibbs free energy barrier. Ultimately, the obtained B-Co exhibits pH-universal HER properties in various electrolytes. A highly efficient HER performance with overpotentials as low as 27, 163, and 430 mV to -10, -100, and -500 mA cm-2 in 1.0 M KOH, respectively, is observed for the B-Co electrode. More importantly, the UOR-assisted electrolyzer only requires a voltage input of 1.55 V to produce the current densities of 50 mA cm-2, resulting in a 200 mV saving-energy potential compared to water electrolysis, demonstrating its high efficiency of hydrogen production in industrial applications.
Collapse
Affiliation(s)
- Siyuan Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhipeng Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quanjiang Lv
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianling Dong
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luyu Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jian Han
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Fuzhan Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
4
|
Li X, Han B, Cao S, Bai H, Li J, Du X. In-situ reconstitution of Ni(III)-based active sites from vanadium doped nickel phosphide/metaphosphate for super-stable urea-assisted water electrolysis at large current densities. J Colloid Interface Sci 2024; 680:665-675. [PMID: 39531884 DOI: 10.1016/j.jcis.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and urea electrooxidation reaction (UOR) are urgently needed for hydrogen production from urea-containing wastewater electrolysis. The main challenge lies in the sluggish UOR kinetics and the stability of catalyst under practical high current density. Here, a vanadium doped heterostructure of Ni(PO3)2/Ni2P with shaggy nanosheet morphology was successfully synthesized. The doping of V atoms promotes the formation of Ni(PO3)2/Ni2P heterojunction in phosphating process. It is demonstrated that V-doped Ni(PO3)2/Ni2P accelerates the generation of real active site V@NiOOH in OER and UOR processes, which can also be stabilized by the PO3- ions. The in-situ formed V@NiOOH increases the adsorption energy of urea molecule, and reduces the adsorption energy of key intermediates *COO, thus facilitating the release of CO2 product from the catalyst surface. The energy barrier of *HNCON to *NCON is also reduced dramatically, promoting the kinetics of UOR. In addition, the shaggy nanosheets morphology provides large number of catalytic sites and transport channels, which are conducive to mass transfer under high current density. As a result, the V-Ni(PO3)2/Ni2P electrode based anion-exchange membrane (AEM) electrolyzer needs only 1.61 V to drive the total urea electrolysis at an industrial grade current density of 550 mA cm-2 with an outstanding durability of 700 h. This work paves the way for designing practical efficient and stable electrocatalyst for urea contained wastewater electrolysis to produce hydrogen.
Collapse
Affiliation(s)
- Xiaoming Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Binbin Han
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuyi Cao
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongtao Bai
- Tianjin Chenli Engineering Design Co., Ltd., Tianjin 300130, China
| | - Jingde Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaohang Du
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
5
|
Zheng Y, Wang Y, Mansoor S, Hu Z, Zhang Y, Liu Y, Zhou L, Lei J, Zhang J. Tuning Electrons Migration of Dual S Defects Mediated MoS 2-x/ZnIn 2S 4-x Toward Highly Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311725. [PMID: 38558506 DOI: 10.1002/smll.202311725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Photocatalytic hydrogen production is a prevalent method for hydrogen synthesis. However, high recombination rate of photogenerated carriers and high activation energy barrier of H remain persistent challenge. Here, the two-step hydrothermal method is utilized to prepare dual S-defect mediated catalyst molybdenum sulfide/zinc indium sulfide (MSv/ZISv), which has high hydrogen production rate of 8.83 mmol g-1h-1 under simulated sunlight. The achieved rate is 21.91 times higher than pure ZnIn2S4 substrate. Defects in ZIS within MSv/ZISv modify the primitive electronic structure by creating defect state that retaining good reducing power, leading to the rapid separation of electron-hole pairs and the generation of additional photogenerated carriers. The internal electric field further enhances the migration toward to cocatalyst. Simultaneously, the defects introduced on the MoS2 cause electron rearrangement, leading to electron clustering on both S vacancies and edge S. Thereby MSv/ZISv exhibits the lowest activation energy barrier and |ΔGH*|. This work explores the division of synergies between different types of S defects, providing new insights into the coupling of defect engineering.
Collapse
Affiliation(s)
- Yifan Zheng
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yu Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Seemal Mansoor
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Zixu Hu
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yuxin Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Liang Zhou
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Department of Molecular Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Juying Lei
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Liu Y, Ma X, Huang H, Deng G, Wang J, Chen X, Gao T. Ammonia-assisted Ni particle preferential deposition in Ni-Fe pyrophosphates on iron foam to improve the catalytic performance for overall water splitting. J Colloid Interface Sci 2024; 665:573-581. [PMID: 38552574 DOI: 10.1016/j.jcis.2024.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Designing efficient and cost-effective electrocatalysts for overall water splitting remains a major challenge in hydrogen production. Herein, ammonia was introduced to pyrophosphate chelating solution assisted Ni particles preferential plating on porous Fe substrate to form coral-like Ni/NiFe-Pyro electrode. The pyrophosphate with multiple complex sites can couple with nickel and iron ions to form an integrated network structure, which also consists of metallic nickel due to the introduction of ammonia. The large network structure in Ni/NiFe-Pyro significantly enhances the synergistic effect between nickel and iron and then improves the electrocatalytic performance. As a result, the coral-like Ni/NiFe-Pyro@IF exhibits good electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrolyzer assembled with Ni/NiFe-Pyro@IF as cathode and anode just needs a low water-splitting voltage of 1.54 V to obtain the current density of 10 mA cm-2. Meanwhile, the stability test of Ni/NiFe-Pyro@IF is performed at the current densities ranging from 10 to 400 mA cm-2 for 50 h without any significant decay, indicating robust catalytic stability for overall water splitting. This strategy for synthesizing metal/metal pyrophosphate composites may provide a new avenue for future studies of efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Xianguo Ma
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Hongsheng Huang
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Jiexue Wang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Xiaojuan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
7
|
Liao M, Zhao B, Zhang G, Peng J, Zhang Y, Liu B, Wang X. The oxygen evolution reaction on cobalt atom embedded nitrogen doped graphene electrocatalysts: a density functional theory study. Phys Chem Chem Phys 2024; 26:14079-14088. [PMID: 38687286 DOI: 10.1039/d4cp00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The oxygen evolution reaction (OER) is essential for the development of renewable energy conversion and storage technologies. Eight N-doped graphenes containing variable numbers of embedded cobalt atoms (Coxy-NG, x = 1-4, y = 1-3, where x represents the number of embedded Co atoms and y represents different configurations) were designed and their OER electrocatalytic activities were systematically studied through density functional theory calculations. The significant roles of the number of Co atoms and their configuration in their OER performance were discussed in detail. Co31-NG occupies the peak of the activity volcano plot with a low overpotential of 0.31 V, which is smaller than Co11-NG with only one Co atom and even superior to the widely used IrO2 (0.56 V). The electronic structure and electron density analysis reveal that the outstanding electrocatalytic performance is due to the orbital hybridization between Co and N atoms and the increased positive charge on in-plane Co due to the out-of-plane Co atoms/clusters. This work clarifies the important role of transition atoms and provides excellent examples for reducing the overpotential through embedding several transition metal atoms onto single-atom electrocatalysts.
Collapse
Affiliation(s)
- Meijing Liao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bing Zhao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guangsong Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Junhao Peng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Bin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xinfang Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| |
Collapse
|
8
|
Zhang C, Li Q, Zhao J, Liu R. Sodium chloride modulated construction of hollow Co/Co 3O 4 heterostructure with enhanced mesoscale diffusion towards overall water splitting. J Colloid Interface Sci 2024; 657:169-177. [PMID: 38039878 DOI: 10.1016/j.jcis.2023.11.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Fabricating an efficient electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) isthe most challenging task for overall water splitting. Herein, we utilized the confinement effect of molten sodium chloride (NaCl) to controllably prepare hollow Co/Co3O4 nanoparticles embedded into nitrogen-doped carbon (H-Co/Co3O4-NC). Experimental and theoretical investigations revealed that the interfacial interaction within Co/Co3O4 heterostructure played a pivotal role in modulating the electronic structure and facilitating the electron transfer. Meanwhile, the superiority of hollow nanostructure could promote the mesoscale mass diffusion. Remarkably, the as-prepared H-Co/Co3O4-NC catalyst achieved the low overpotentials of 316 mV and 252 mV towards OER and HER, respectively, which delivered overall water splitting with the potential of 1.76 V at a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Chenlu Zhang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qin Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jing Zhao
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Rui Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
9
|
Habib MA, Burse S, Lin S, Mandavkar R, Joni MH, Jeong JH, Lee SS, Lee J. Dual-Functional Ru/Ni-B-P Electrocatalyst Toward Accelerated Water Electrolysis and High-Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307533. [PMID: 37940617 DOI: 10.1002/smll.202307533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Development of advanced electrocatalysts for the green hydrogen production by water electrolysis is an important task to reduce the climate and environmental issues as well as to meet the future energy demands. Herein, Ru/Ni-B-P sphere electrocatalyst is demonstrated by a combination of hydrothermal and soaking approaches, meeting the industrial requirement of low cell voltage with stable high-current operation. The Ru/Ni-B-P sphere catalyst demonstrates low overpotentials of 191 and 350 mV at 300 mA cm-2 with stable high current operation, ranking it as one of the best oxygen evolution reaction (OER) electrocatalysts. The bifunctional 2-E system demonstrates a low cell voltage of 2.49 V at 2000 mA cm-2 in 6 m KOH at 60 °C of harsh industrial operation condition. It also demonstrates outstanding stability with continuous 120 h (5 days) CA operation at 1000 mA cm-2. Further, the hybrid configuration of Ru/Ni-B-P || Pt/C being paired with the conventional benchmark electrode demonstrates a record low 2-E cell voltage of 2.40 V at 2000 mA cm-2 in 6 m KOH and excellent stability at high current of 1500 mA cm-2 under industrial operational condition.
Collapse
Affiliation(s)
- Md Ahasan Habib
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Shalmali Burse
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Shusen Lin
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Rutuja Mandavkar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Mehedi Hasan Joni
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| |
Collapse
|
10
|
Abd El-Lateef HM, Khalaf MM, Mohamed IM. XPS analysis, voltammetric, and impedance characteristics of novel heterogeneous biphosphates based on Cu/Ni for tri(ammonium) phosphate oxidation: A new direction for material processing in fuel technology. FUEL 2024; 356:129618. [DOI: 10.1016/j.fuel.2023.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Wang X, Zhang Y, Lv C, Liu Z, Wang L, Zhao B, Zhang T, Xin W, Jiao Y. Colloid synthesis of Ni 12P 5/N, S-doped graphene as efficient bifunctional catalyst for alkaline hydrogen evolution and triiodide reduction reaction. J Colloid Interface Sci 2023; 652:12-22. [PMID: 37591073 DOI: 10.1016/j.jcis.2023.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Designing high-efficient bifunction catalysts with excellent catalytic activity and enhanced charge-transfer capability in both alkaline hydrogen evolution reaction (HER) and triiodide reduction reaction (IRR) is of utmost significance to advance the development of green hydrogen production and photovoltaics, respectively, yet remains a crucial challenge. Here, highly dispersed and small-sized Ni12P5 nanocrystals with narrow size distribution was well attached on the surface of N, S co-doped graphene (Ni12P5/NSG) by the facile hot-injection method. As expected, the optimized Ni12P5/NSG requires a relatively low overpotential of 132.94 ± 0.08 mV to deliver a current density of 10 mA cm-2 in alkaline condition, accompanied with remarkable long-time durability with negligible attenuation over 50 h. Density functional theory (DFT) calculations revealed that the positively synergic effect between Ni12P5 and NSG are in favor of modulating the rate determining step of the dissociation of H2O to *(OH-H), thereby upgrading its HER activity. When used as the counter electrode catalyst for IRR in DSSCs, the resultant Ni12P5/NSG exhibits extraordinary Pt-like catalytic activity and well electrochemical stability in iodide-based electrolyte, delivering a high photoelectric conversion performance (PCE) comparable to Pt. The improved PCE can be attributed to the accelerated interfacial charge-transfer capability around active sites for facilitating the reaction kinetics of IRR, as demonstrated by DFT calculations. This work provides an effective strategy for synthesizing cost-effective composites with multi-active sites and offering valuable insight into the structure-performance relationship, which is conducive to guide the synthesis of promising catalysts in the energy conversion field.
Collapse
Affiliation(s)
- Xiuwen Wang
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Yuwei Zhang
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Chunmei Lv
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zuhui Liu
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liyan Wang
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Tao Zhang
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wen Xin
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, School of Chemistry and Chemistry Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
12
|
He L, Wang N, Sun B, Zhong L, Wang Y, Komarneni S, Hu W. A low-cost and efficient route for large-scale synthesis of NiCoS x nanosheets with abundant sulfur vacancies towards quasi-industrial electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 650:1274-1284. [PMID: 37478744 DOI: 10.1016/j.jcis.2023.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Transition-metal sulfides (TMS) have piqued a great deal of interest due to their unprecious nature and high intrinsic catalytic activity for water splitting. In this work, a low-cost and efficient route was developed, which included electrodeposition to prepare Ni-Co layered double hydroxide (NiCo-LDH) followed by ion exchange to form nickel cobalt sulfide (NiCoSx). Electrochemical reduction was used to modulate sulfur vacancies in order to produce sulfur vacancies-rich NiCoSx with nanosheet arrays on -three-dimensional nickel foam (NiCoSx-0.4/NF) with a large area of more than 250 cm2. Combining data from experiments and density functional theoretical (DFT) calculations reveals that engineered sulfur vacancies change the electronic structure, electron transfer property, and surface electron density of NiCoSx, significantly improving the free energy of water adsorption and boosting electrocatalytic activity. The developed NiCoSx-0.4/NF has long-term stability of more than 300 h at 500 mA cm-2 in 1 M KOH at ambient temperature and only needs a 289 mV overpotential at 100 mA cm-2. Remarkably, the synthesized electrocatalyst rich in sulfur vacancies, exhibits exceptional performance with a high current density of up to 1.9 A cm-2 and 1 A cm-2 in 6 M KOH and leads to overpotentials of 286 mV at 80 °C and 358 mV at 60 °C, respectively. The catalyst's practicability under quasi-industrial conditions (60 °C, 6 M KOH) is further demonstrated by its long-term stability for 220 h with only a 3.9 % potential increase at 500 mA cm-2.
Collapse
Affiliation(s)
- Lixiang He
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Ni Wang
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China; Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Baolong Sun
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Li Zhong
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Wencheng Hu
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
13
|
Viswanathan P, Kim K. In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16571-16583. [PMID: 36971241 DOI: 10.1021/acsami.2c18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost.
Collapse
Affiliation(s)
- Perumal Viswanathan
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Keshipour S, Eyvari‐Ashnak F. Nitrogen‐Doped Electrocatalysts, and Photocatalyst in Water Splitting: Effects, and Doping Protocols. ChemElectroChem 2023. [DOI: 10.1002/celc.202201153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Sajjad Keshipour
- Department of Nanotechnology, Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| | - Faezeh Eyvari‐Ashnak
- Department of Nanotechnology, Faculty of Chemistry Urmia University Urmia 5756151818 Iran
| |
Collapse
|
15
|
PGM-Free Electrocatalytic Layer Characterization by Electrochemical Impedance Spectroscopy of an Anion Exchange Membrane Water Electrolyzer with Nafion Ionomer as the Bonding Agent. Catalysts 2023. [DOI: 10.3390/catal13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Low-cost anion exchange membrane (AEM) water electrolysis is a promising technology for producing “green” high-purity hydrogen using platinum group metal (PGM)-free catalysts. The performance of AEM electrolysis depends on the overall overvoltage, e.g., voltage losses coming from different processes in the water electrolyzer including hydrogen and oxygen evolution, non-faradaic charge transfer resistance, mass transfer limitations, and others. Due to the different relaxation times of these processes, it is possible to unravel them in the frequency domain by electrochemical impedance spectroscopy. This study relates to solving and quantifying contributions to the total polarization resistance of the AEM water electrolyzer, including ohmic and charge transfer resistances in the kinetically controlled mode. The high-frequency contribution is proposed to have non-faradaic nature, and its conceivable nature and mechanism are discussed. The characteristic frequencies of unraveled contributions are provided to be used as benchmark data for commercially available membranes and electrodes.
Collapse
|
16
|
Nam D, Lee G, Kim J. Effect of phosphorus vacancies on activity of Fe-doped Nickel phosphide by NaBH4 reduction for efficient oxygen evolution under alkaline conditions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Gao T, Yu S, Chen Y, Li X, Tang X, Wu S, He B, Lan H, Li S, Yue Q, Xiao D. Regulating the thickness of the carbon coating layer in iron/carbon heterostructures to enhance the catalytic performance for oxygen evolution reaction. J Colloid Interface Sci 2023; 642:120-128. [PMID: 37001451 DOI: 10.1016/j.jcis.2023.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/Fe3C particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process. Fe/Fe3C-A@CNT using iron acetylacetonate as metal sources possesses unique Fe/C heterogeneous, small Fe/Fe3C particles encapsulated by the thin carbon coating layer (1.77 nm), and obtains the optimal electron penetration effect. The electron penetration effect derives from the redistribution of charge between the surface carbon coating layer and inner Fe/Fe3C nanoparticles efficiently improving both catalytic activity and stability. Therefore, Fe/Fe3C-A@CNT shows efficient OER catalytic activity, just needing a low overpotential of 292 mV to reach a current density of 10 mA cm-2, and long-lasting stability. More importantly, the unique control strategy for carbon thickness in this work provides more opportunity and perspective to prepare robust metal/carbon-based catalytic materials at the nanoscale.
Collapse
|
18
|
Catalytic dehydration of 2-propanol over nickel phosphide immobilized on natural bentonite. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
19
|
Construction of CoFe bimetallic phosphide microflowers electrocatalyst for highly efficient overall water splitting. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
20
|
Min K, Kim H, Ku B, Na R, Lee J, Baeck SH. Defect-rich Fe-doped Ni2P microflower with phosphorus vacancies as a high-performance electrocatalyst for oxygen evolution reaction. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Zheng X, Song Y, Liu Y, Yang Y, Wu D, Yang Y, Feng S, Li J, Liu W, Shen Y, Tian X. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Xu W, Zhu L, Sun Z, Xue H, Guo L, Feng Y, Li C, Li H, Wang Y, Liang Q, Sun HB. P-Induced Permeation of Nickel into WO 3 Octahedra to Form a Synergistic Catalyst for Urea Oxidation. CHEMSUSCHEM 2022; 15:e202201584. [PMID: 36195829 DOI: 10.1002/cssc.202201584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Small-molecule induction can lead to the oriented migration of metal elements, which affords functional materials with synergistic components. In this study, phosphating nickel foam (NF)-supported octahedral WO3 with phosphine affords P-WO3 /NF electrocatalyst. Ni is found to form Ni-P bonds that migrate from NF to WO3 under the induction of P, resulting in the complex oxides W1.3 Ni0.24 O4 and Ni2 P2 O7 in the particle interior and nickel phosphide on the octahedral grain surface. The catalytic activity of P-WO3 /NF in the urea oxidation reaction (UOR) is improved by synergistic action of the components in the synthesized hybrid particles. A current density of 10 mA cm-2 can be reached at a potential of 1.305 V, the double layer capacitance of the catalyst is significantly increased, and the electron transfer impedance in catalytic UOR is reduced. This work demonstrates that small-molecule induction is suitable for constructing co-catalysts with complex components in a simple protocol, which provides a new route for the design of highly efficient urea oxidation electrocatalysts.
Collapse
Affiliation(s)
- Wenjuan Xu
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Lin Zhu
- College of Sciences, Northeastern University, 110819, Shenyang, P. R. China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Huichun Xue
- College of Sciences, Northeastern University, 110819, Shenyang, P. R. China
| | - Liutao Guo
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yanru Feng
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Chengrui Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
24
|
Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
25
|
Ni2P–Ni2P4O12 enhanced CdS nanowires for efficient visible light photocatalytic hydrogen production. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhang R, Du X, Li S, Guan J, Fang Y, Li X, Dai Y, Zhang M. Application of heteroatom doping strategy in electrolyzed water catalytic materials. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Munkaila S, Dahal R, Kokayi M, Jackson T, Bastakoti BP. Hollow Structured Transition Metal Phosphates and Their Applications. CHEM REC 2022; 22:e202200084. [PMID: 35815949 DOI: 10.1002/tcr.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Hollow nanostructures of transition metal phosphate are of immense interest in the existing and evolving areas of technology, due to their high surface area, presence of hollow void, and easy tuning of compositions and dimensions. Emerging synthesis methods such as template-free methods, hard-templating, and soft-templating are discussed in this review. Applications of these hollow metal phosphates dominate in energy storage and conversions, with specific advantages as supercapacitor materials. Other applications, including drug delivery, water splitting, catalysis, and adsorption, are reviewed. Finally, additional perspectives on the progress of these nanostructures, and their existing challenges related to the current synthesis routes are covered. Therefore, with the strategic modifications of the unique properties of these hollow metal phosphates, broader application requirements are fulfilled.
Collapse
Affiliation(s)
- Samira Munkaila
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Rabin Dahal
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Manzili Kokayi
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Tatyana Jackson
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| | - Bishnu Prasad Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St, Greensboro, NC 27411
| |
Collapse
|
28
|
Liu P, Li J, Yan J, Song W. Defect-rich Fe-doped NiS/MoS 2 heterostructured ultrathin nanosheets for efficient overall water splitting. Phys Chem Chem Phys 2022; 24:8344-8350. [PMID: 35322819 DOI: 10.1039/d1cp05721a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the demand for efficient hydrogen/oxygen evolution reaction (HER/OER) bifunctional electrocatalysts, defect-rich two-dimensional (2D) heterostructured materials attract increasing attention due to abundant active sites and facile mass/charge transfer. However, precise manipulation of lattice defects in a 2D heterostructured material is still a challenge. Herein, through pyrolytic sulfurization of a layered Fe-doped Ni/Mo MOF precursor, a series of defect-rich Fe-doped NiS/MoS2 ultrathin nanosheets were obtained. For 0.1Fe-NiS/MoS2, abundant lattice defects induced by Fe atoms provide more water adsorption sites, and intimate interface between NiS and MoS2 can optimize the adsorption energy of a HER/OER intermediate. As a result, both HER and OER activities are significantly enhanced. The respective overpotential is 120 mV and 297 mV for the HER and OER. Small Tafel slopes of 69.0 mV dec-1 and 54.7 mV dec-1 indicate favorable electrochemical reaction kinetics. The catalytic performance of this material can be compared with those of 20% Pt/C and RuO2 catalysts and top-rated MoS2-based materials. For overall water splitting, only 1.66 V voltage is required to deliver 10 mA cm-2. Long-term stability of 0.1Fe-NiS/MoS2 presents a prospect for its practical application.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jiawen Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jianyue Yan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
29
|
Zhao Y, Liang Y, Wu D, Tian H, Xia T, Wang W, Xie W, Hu XM, Tian X, Chen Q. Ruthenium Complex of sp 2 Carbon-Conjugated Covalent Organic Frameworks as an Efficient Electrocatalyst for Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107750. [PMID: 35224845 DOI: 10.1002/smll.202107750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
It is still a great challenge to explore hydrogen evolution reaction (HER) electrocatalysts with both lower overpotential and higher stability in acidic electrolytes. In this work, an efficient HER catalyst, Ru@COF-1, is prepared by complexation of triazine-cored sp2 carbon-conjugated covalent organic frameworks (COFs) with ruthenium ion. Ru@COF-1 possesses high crystallinity and porosity, which are beneficial for electrocatalysis. The large specific surface area and regular porous channels of Ru@COF-1 facilitate full contact between reactants and catalytic sites. The nitrogen atoms of triazines are protonated in the acidic media, which greatly improve the conductivity of Ru@COF-1. This synergistic effect makes the overpotential of Ru@COF-1 about 200 mV at 10 mA cm-2 , which is lower than other reported COFs-based electrocatalysts. Moreover, Ru@COF-1 exhibits exceptionally electrocatalytic durability in the acidic electrolytes. It is particularly stable and remains highly active after 1000 cyclic voltammetry cycles. Density functional theory calculations demonstrate that tetracoordinated Ru-N2 Cl2 moieties are the major contributors to the outstanding HER performance. This work provides a new idea for developing protonated HER electrocatalysts in acidic media.
Collapse
Affiliation(s)
- Yuxiang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Ying Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Hao Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Weiyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Xin-Ming Hu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| |
Collapse
|
30
|
Carbon foam-supported CoN nanoparticles and carbon nanotubes hybrids as bifunctional reduction electrocatalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
31
|
Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction. J Colloid Interface Sci 2022; 616:338-346. [PMID: 35219199 DOI: 10.1016/j.jcis.2022.02.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
Abstract
As a promising dopant, electron deficient B atom not only tunes the electronic structure of electrocatalysts for improving their intrinsic catalytic activities, but also combines with hydroxy radical as strong adsorption sites for accelerating the water dissociation during the hydrogen evolution reaction (HER). In this paper, we report an electrocatalyst based on boron-modified Ru anchored on carbon nanotubes (B-Ru@CNT) that shows impressive HER activity in acidic and alkaline media. The boron-rich closo-[B12H12]2- borane was selected as a moderately strong reductant for the in situ reduction of a Ru salt, which yielded B-doped Ru nanoparticles. The experimental and theoretical results indicate that the incorporation of B not only weakens the Ru-H bond and downshifts the d-bond centre of Ru from the Fermi level by reducing the electron density at Ru but also accelerates the water dissociation reaction by providing B sites, which strongly adsorb OH* intermediates, and nearby Ru sites, which act as sites for the adsorption of the H* intermediate, thus boosting the HER performance and enhancing the HER kinetics. As a result of the tuning of the electronic structure via B doping, B-Ru@CNT showed excellent HER performance, yielding overpotentials of 17 and 62 mV at a current density of 10 mA cm-2 in alkaline and acidic solutions, respectively. These results indicate that our synthetic method is a promising route to B-doped metallic Ru with enhanced pH-independent HER performance.
Collapse
|
32
|
Feng S, Yu Y, Li J, Luo J, Deng P, Jia C, Shen Y, Tian X. Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
33
|
Li Z, Xu W, Yu X, Yang S, Zhou Y, Zhou K, Wu Q, Ning S, Luo M, Zhao D, Wang N. Synergistic effect between 1D Co3S4/MoS2 heterostructures to boost the performance for alkaline overall water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01646f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reasonably designing and constructing the hetero-bimetal sulfides with high performance for oxygen/hydrogen evolution reaction (O/HER) in the alkaline electrolyte are promising but still challenging. Herein, the 1D Co3S4/MoS2 bimetallic sulfide...
Collapse
|
34
|
Chen Q, Yu Y, Li J, Nan H, Luo S, Jia C, Deng P, Zhong S, Tian X. Recent progress in layered double hydroxides based electrocatalyst for hydrogen evolution reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingrong Chen
- Hainan University State Key Laboratory of Marine Resource Utilization in South China Sea CHINA
| | - Yanhui Yu
- Hainan University State Key Laboratory Marine Resource Utilization in South China Sea CHINA
| | - Jing Li
- Hainan University State Key Laboratory Marine Resouce Utilization in South China Sea CHINA
| | | | - Shenxu Luo
- Hainan University School of Science CHINA
| | - Chunman Jia
- Hainan University State Key Laboratory Marine Resource Utilization in South China Sea CHINA
| | - Peilin Deng
- Hainan University State Key Laboratory Marine Resource Utilization in Sea China Sea CHINA
| | - Shengkui Zhong
- Hainan Tropical Ocean University College of Marine Science & Technology CHINA
| | - Xinlong Tian
- Hainan University State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China 570228 Haikou CHINA
| |
Collapse
|
35
|
Liu Y, Zheng X, Yang Y, Li J, Liu W, Shen Y, Tian X. Photocatalytic Hydrogen Evolution Using Ternary‐Metal‐Sulfide/TiO
2
Heterojunction Photocatalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
| | - Xinlong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
- Mechanical and Electrical Engineering College Hainan University Haikou 570228 P. R. China
| | - Yingjie Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
| | - Weifeng Liu
- Mechanical and Electrical Engineering College Hainan University Haikou 570228 P. R. China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan Provincial Key Lab of Fine Chemistry School of Science Hainan University Haikou 570228 P. R. China
| |
Collapse
|