1
|
Shu R, Xu L, Guan Y. Preparation of cellulose derived carbon/reduced graphene oxide composite aerogels for broadband and efficient microwave dissipation. J Colloid Interface Sci 2024; 675:401-410. [PMID: 38972127 DOI: 10.1016/j.jcis.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The development of cellulose derived carbon-based composite aerogels with light weight, broad bandwidth and strong absorption remains a challenging task. In this work, the cellulose derived carbon/reduced graphene oxide composite aerogels were prepared by a two-stage process of chemical crosslinking and high-temperature carbonization. The results revealed that the as-fabricated binary composite aerogels had a unique lightweight characteristic and three-dimensional porous network structure, which was chemically crosslinked by epichlorohydrin. Furthermore, the weight concentration of graphene oxide (GO) had a notable influence on the electromagnetic parameters and microwave absorption properties of the composite aerogels. The obtained binary composite aerogel possessed the optimal microwave dissipation capability when the concentration of GO was 1.5 mg/mL. Remarkably, the minimum reflection loss reached -50.42 dB at a thickness of 2.47 mm and a filling ratio of 17.5 wt%. Concurrently, the composite aerogel with a comparable thickness of 2.73 mm showed a wide effective absorption bandwidth of 7.28 GHz, spanning the total Ku-band and extending into a portion of the X-band. The radar cross section contribution of binary composite aerogels in the far-field was also simulated by computer simulation technique. In addition, the potential microwave attenuation mechanism was proposed. It was believed that the results of this paper would offer a reference for the preparation of cellulose derived carbon-based composite aerogels as efficient and broadband microwave absorbers.
Collapse
Affiliation(s)
- Ruiwen Shu
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China; Engineering Technology Research Center of Coal Resources Comprehensive Utilization, Anhui Province, Anhui University of Science and Technology, Huainan 232001, China.
| | - Leilei Xu
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Guan
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
2
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Wang J, Ming W, Chen L, Song T, Yele M, Zhang H, Yang L, Sarula G, Liang B, Yan L, Wang G. MoS 2 Lubricate-Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 17:36. [PMID: 39392512 PMCID: PMC11469983 DOI: 10.1007/s40820-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
The design and fabrication of high toughness electromagnetic interference (EMI) shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem. Ternary MXene/ANF (aramid nanofibers)-MoS2 composite films with nacre-like layered structure here are fabricated after the introduction of MoS2 into binary MXene/ANF composite system. The introduction of MoS2 fulfills an impressive "kill three birds with one stone" improvement effect: lubrication toughening mechanical performance, reduction in secondary reflection pollution of electromagnetic wave, and improvement in the performance of photothermal conversion. After the introduction of MoS2 into binary MXene/ANF (mass ratio of 50:50), the strain to failure and tensile strength increase from 22.1 ± 1.7% and 105.7 ± 6.4 MPa and to 25.8 ± 0.7% and 167.3 ± 9.1 MPa, respectively. The toughness elevates from 13.0 ± 4.1 to 26.3 ± 0.8 MJ m-3 (~ 102.3%) simultaneously. And the reflection shielding effectiveness (SER) of MXene/ANF (mass ratio of 50:50) decreases ~ 10.8%. EMI shielding effectiveness (EMI SE) elevates to 41.0 dB (8.2-12.4 GHz); After the introduction of MoS2 into binary MXene/ANF (mass ratio of 60:40), the strain to failure increases from 18.3 ± 1.9% to 28.1 ± 0.7% (~ 53.5%), the SER decreases ~ 22.2%, and the corresponding EMI SE is 43.9 dB. The MoS2 also leads to a more efficient photothermal conversion performance (~ 45 to ~ 55 °C). Additionally, MXene/ANF-MoS2 composite films exhibit excellent electric heating performance, quick temperature elevation (15 s), excellent cycle stability (2, 2.5, and 3 V), and long-term stability (2520 s). Combining with excellent mechanical performance with high MXene content, electric heating performance, and photothermal conversion performance, EMI shielding ternary MXene/ANF-MoS2 composite films could be applied in many industrial areas. This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
Collapse
Affiliation(s)
- Jiaen Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Wei Ming
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Longfu Chen
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Tianliang Song
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Moxi Yele
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Hao Zhang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Long Yang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Gegen Sarula
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Benliang Liang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Luting Yan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Guangsheng Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
4
|
Li Z, Mehraj A, Sun Z, Fu W, Wang S. Advanced integrated nanochannel membrane with oppositely-charged bacterial cellulose and functionalized polymer for efficient salinity gradient energy generation. Int J Biol Macromol 2024; 277:133975. [PMID: 39029819 DOI: 10.1016/j.ijbiomac.2024.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Reverse electrodialysis (RED) systems employing charged nanochannels have gained prominence for harvesting salinity gradient energy. Nevertheless, fabricating nanochannel membranes with optimal ion selectivity and high energy conversion efficiency remains a significant challenge. In this study, we develop oppositely charged bacterial cellulose (BC)/polymer composite nano-channel membranes with precisely designed nanochannel architectures by integrating chemical modification with composite material technology. Initially, BC undergoes chemical modifications, including 2,2,6,6-Tetramethylpiperidine 1-oxy radical (TEMPO) oxidation and quaternisation. Subsequently, a polymer network is integrated into the modified BC network through a polymer synthesis technique. This approach successfully yields negatively charged BC/poly(sodium p-styrene sulfonate) (NBC/PSS) composite double-networked nanochannel membranes and positively charged BC/poly(dopamine) (PBC/PDA) composite double-networked nanochannel membranes. Notably, these membranes exhibit significantly enhanced ionic conductivities, with values of 0.0008 and 0.0014 S cm-1 for the NBC/PSS and PBC/PDA composites, respectively, while also demonstrating superior ion selectivity with cation transfer numbers of 0.9 and 0.1 respectively. Furthermore, a series connection of 30 BCE/charged polymer-based RED devices successfully powers an electronic calculator. This work offers novel insights into the design of BC-based RED devices by integrating chemical modification and polymeric composite strategies for efficient salinity gradient energy generation.
Collapse
Affiliation(s)
- Zhouyue Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ahmad Mehraj
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenkai Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Gao Z, Shi Y, Ma L, Du J, Qiu J. Bioinspired Hierarchical Composite for Multiband Defense. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49687-49700. [PMID: 39231313 DOI: 10.1021/acsami.4c11991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The optimization of electromagnetic microwave absorbing (EMA) materials for radar stealth has been a continuous endeavor. However, meeting the defense requirements across multiple-frequency bands in increasingly complex and variable environments remains challenging. Drawing inspiration from the cytoskeleton-organelle structure, we designed and prepared a hierarchical MXene/NiFe2O4/calcined melamine foam (MNC) composite. The composite exhibits efficient and adjustable microwave absorption, infrared stealth, and solar absorption performance through the synergistic interaction of the components and the spatial effect of its novel microstructure. The composite achieves a minimum reflection loss of -58.57 dB and an effective absorption bandwidth (EAB) of 7.00 GHz, both of which can vary with the thickness. MNC also offers stable infrared stealth performance for heat sources ranging from 37 to 300 °C and high solar absorptivity up to 96.2%, promoting ambient-temperature-adaptive infrared stealth through electricity-sunlight cooperative regulation. With exceptional environmental adaptability characteristics such as photothermal conversion, lightness, elasticity, and hydrophobicity, the MNC composite holds promise as a multispectrum defense material for radar, infrared, and visible light for various forms of equipment, clothing, and wearables in harsh conditions.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yunan Shi
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Lixia Ma
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jiang Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jun Qiu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|
6
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. CHEMOSPHERE 2024; 362:142654. [PMID: 38901705 DOI: 10.1016/j.chemosphere.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Clean water is an integral part of industries, agricultural activities and human life, but water contamination by toxic dyes, heavy metals, and oil spills is increasingly serious in the world. Aerogels with unique properties such as highly porous and extremely low density, tunable surface modification, excellent reusability, and thermal stability can contribute to addressing these issues. Thanks to high purity, biocompatibility and biodegradability, bacterial cellulose can be an ideal precursor source to produce aerogels. Here, we review the modification, regeneration, and applications of bacterial cellulose-based aerogels for water treatment. The modification of bacterial cellulose-based aerogels undergoes coating of hydrophobic agents, carbonization, and incorporation with other materials, e.g., ZIF-67, graphene oxide, nanoparticles, polyaniline. We emphasized features of modified aerogels on porosity, hydrophobicity, density, surface chemistry, and regeneration. Although major limits are relevant to the use of toxic coating agents, difficulty in bacterial culture, and production cost, the bacterial cellulose aerogels can obtain high performance for water treatment, particularly, catastrophic oil spills.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
7
|
Liu J, Dong Y, Liu Q, Liu W, Lin H. MoS 2-based nanocomposites and aerogels for antibiotic pollutants removal from wastewater by photocatalytic degradation process: A review. CHEMOSPHERE 2024; 354:141582. [PMID: 38462179 DOI: 10.1016/j.chemosphere.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qiaojun Liu
- West District of the First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
8
|
Song Z, Xiang Z, Sun X, Zhou P, Wang H, Hou Y, Wang L, Zhang Q. Regulatable Phase Manipulation-Enhanced Polarization and Conductance Loss Enabling Hierarchical 3D Microsphere-like MoS 2 with Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878782 DOI: 10.1021/acsami.3c09511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Molybdenum disulfide (MoS2) has become a new type of microwave absorption (MA) material due to the abundant functional groups and defects, high polarization effect, and controllable structural design. However, the development of MoS2 has been limited by its inherently low conductance losses and imperfect impedance matching. This study employs ammonium ion (NH4+) intercalation as a phase manipulation strategy to enhance dielectric loss and form heterogeneous structures by incorporating highly conductive 1T phase into the 2H-MoS2 crystal phase. Additionally, the implementation of CTAB as a soft template agent for constructing layered three-dimensional microsphere structures improves impedance matching. The experimental findings demonstrate that the MA performance of MoS2 can be effectively regulated by controlling the 1T phase content and morphological structure design. It is worth noting that A-MoS2-2 possesses excellent multifrequency absorption capability. A-MoS2-2 has a minimum reflection loss (RL) of -53 dB at a coating thickness of 1.99 mm and an effective absorption bandwidth (EAB) of 5.6 GHz at a thinner coating thickness of 1.77 mm. This work improves the MA properties of MoS2 by introducing metallic phases and unique structural design, which opens up new ideas for the development of MA materials.
Collapse
Affiliation(s)
- Zhi Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zicheng Xiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoyan Sun
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Panpan Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hong Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yi Hou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lixi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qitu Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
9
|
Geng H, Guo Y, Zhang X, Zhang Y, Wang X, Zhao P, Wang G, Liao J, Dong L. Combination strategy of large interlayer spacing and active basal planes for regulating the microwave absorption performance of MoS 2/MWCNT composites at thin absorber level. J Colloid Interface Sci 2023; 648:12-24. [PMID: 37295364 DOI: 10.1016/j.jcis.2023.05.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Recently, molybdenum disulfide (MoS2)/carbon has become a promising candidate for efficient microwave absorption. However, it is still challenging to simultaneously optimize the synergy of impedance matching and loss capability at the level of a thin absorber. Here, a new adjustment strategy is proposed by changing the concentration of precursor l-cysteine for MoS2/multi-walled carbon nanotubes (MWCNT) composites to unlock the basal plane of MoS2 and expand the interlayer spacing from 0.62 nm to 0.99 nm, leading to improved packing of MoS2 nanosheets and more active sites. Therefore, the tailored MoS2 nanosheets exhibit abundant sulfur-vacancies, lattice-oxygen, more metallic 1T-phase, and higher surface area. Such sulfur-vacancies and lattice-oxygen promote the electronic asymmetric distribution at the solid-air interface of MoS2 crystals and induce stronger microwave attenuation through interface/dipole polarization, which is further verified by first-principles calculations. In addition, the expansion of the interlayer spacing induces more MoS2 to deposit on the MWCNT surface and increases the roughness, improving the impedance matching and multiple scattering. Overall, the advantage of this adjustment method is that while optimizing impedance matching at the thin absorber level, composite still maintains a high attenuation capacity, which means enhancing the attenuation performance of MoS2 itself offsets the weakening of the composite's attenuation ability caused by the decrease in the relative content of MWCNT components. Most importantly, adjusting impedance matching and attenuation ability can be easily implemented by separate control of l-cysteine content. As a result, the MoS2/MWCNT composites achieve a minimum reflection loss value of -49.38 dB and an effective absorption bandwidth of 4.64 GHz at a thickness of only 1.7 mm. This work provides a new vision for the fabrication of thin MoS2-carbon absorbers.
Collapse
Affiliation(s)
- Haoran Geng
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yi Guo
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuan Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yang Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuelin Wang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Pengfei Zhao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guizhen Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Jianhe Liao
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Lijie Dong
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China.
| |
Collapse
|
10
|
Wang D, Hu Y, Cui Z, Yang P, Du Z, Hou Y, Yang P, Rao J, Wang C, Zhang Y. Sulfur vacancy regulation and multipolarization of NixCo1S nanowires-decorated biotemplated structures to promote microwave absorption. J Colloid Interface Sci 2023; 646:991-1001. [PMID: 37245268 DOI: 10.1016/j.jcis.2023.05.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
It is a novel and practical method to use natural porous biomaterials as microwave absorber. In this study, NixCo1S nanowires (NWs)@diatomite (De) composites with one-dimensional (1D)-NWs and three-dimensional(3D)-De composites were prepared by a two-step hydrothermal method using De as template. The effective absorption bandwidth (EAB) of the composite reaches 6.16 GHz at 1.6 mm and 7.04 GHz at 4.1 mm, covering the entire Ku band, and the minimum reflection loss (RLmin) is less than -30 dB. The excellent absorption performance is mainly due to the bulk charge modulation provided by the 1D NWs and the extended microwave transmission path within the absorber, coupled with the high dielectric loss and magnetic loss of the metal-NWS after vulcanization. We present a high-value method that combines vulcanized 1D materials with abundant De to achieve the lightweight broadband efficient microwave absorption at the first time.
Collapse
Affiliation(s)
- Dashuang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Youzhong Hu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiyuan Cui
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - PaiXuan Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhilan Du
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yi Hou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pingan Yang
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jinsong Rao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Can Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Huang L, Chen J, Liu B, Zhao P, Liao L, Tao J, Wang Y, Wang B, Deng J, Zhao Y. Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101644. [PMID: 37242060 DOI: 10.3390/nano13101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS2). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS2 networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS2, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS2 in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of -44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement.
Collapse
Affiliation(s)
- Le Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jingru Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Bingjun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Lusheng Liao
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Zhanjiang 524001, China
| | - Jinlong Tao
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yueqiong Wang
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Bingbing Wang
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jing Deng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanfang Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Sun Z, Kuang Y, Ahmad M, Huang Y, Yin S, Seidi F, Wang S. Enhanced osmotic energy conversion through bacterial cellulose based double-network hydrogel with 3D interconnected nanochannels. Carbohydr Polym 2023; 305:120556. [PMID: 36737202 DOI: 10.1016/j.carbpol.2023.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Hydrogel with 3D networks have shown great potential for ion transportation and energy conversion. However, the micron size pores of hydrogel greatly limit the ion selectivity and energy conversion performance. Here, we report a bacterial cellulose (BC) derived hydrogel membrane with double-network (DN) and tailored ion transport channels by rationally filling acrylic acid (AAc)-co-acrylamide (AAm)-co-methyl methacrylate (MMA) polymers into BC hydrogel micropores. Fabricated AAM/BC DN hydrogel membrane displays a unique hierarchical interconnected porous structure and 3D cation transport channels. From the results, the maximum power density reached up to 7.63 W·m-2 at 50-fold salinity gradient under alkaline conditions (pH 11). Interestingly, the power density of 45.5 W·m-2 was achieved through acid-base neutralization reaction. Furthermore, hydrogel successfully obtained a power density of 28.4 W·m-2 from a mixed system of paper black liquor wastewater/seawater. The results of this investigation suggested the enormous potential of BC-based nanofluidic membrane in sustainable osmotic energy conversion.
Collapse
Affiliation(s)
- Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yudi Kuang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Mehraj Ahmad
- College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Yin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Natural Hollow Fiber-Derived Carbon Microtube with Broadband Microwave Attenuation Capacity. Polymers (Basel) 2022; 14:polym14214501. [PMID: 36365495 PMCID: PMC9655754 DOI: 10.3390/polym14214501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Constructing hierarchical structures is indispensable to tuning the electromagnetic properties of carbon-based materials. Here, carbon microtubes with nanometer wall thickness and micrometer diameter were fabricated by a feasible approach with economical and sustainable kapok fiber. The carbonized kapok fiber (CKF) exhibits microscale pores from the inherent porous templates as well as pyrolysis-induced nanopores inside the wall, affording the hierarchical carbon microtube with excellent microwave absorbing performance over broad frequency. Particularly, CKF-650 exhibits an optimized reflection loss (RL) of −62.46 dB (10.32 GHz, 2.2 mm), while CKF-600 demonstrates an effective absorption bandwidth (RL < −10 dB) of 6.80 GHz (11.20−18.00 GHz, 2.8 mm). Moreover, more than 90% of the incident electromagnetic wave ranging from 2.88 GHz to 18.00 GHz can be dissipated by simply controlling the carbonization temperature of KF and/or the thickness of the carbon-microtube-based absorber. These encouraging findings provide a facile alternative route to fabricate microwave absorbers with broadband attenuation capacity by utilizing sustainable biomass.
Collapse
|
14
|
Lu X, Li X, Cao Y, Zhu W, Wang Y, Ren Z, Zhu D. 1D CNT-Expanded 3D Carbon Foam/Si 3N 4 Sandwich Heterostructure: Utilizing the Polarization Compensation Effect for Keeping Stable Electromagnetic Absorption Performance at Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39188-39198. [PMID: 35976988 DOI: 10.1021/acsami.2c08389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modern electromagnetic (EM) absorbing materials (EAMs) are experiencing a revolution triggered by advanced information technology. Simultaneously, the diverse harsh EM application scenarios entail a more stringent appeal of practicability to EAMs, especially under high-temperature conditions. Therefore, exploring EAMs with both excellent absorbing performance and practicability at elevated temperatures is necessary. Herein, a novel 3D porous carbon foam/carbon nanotubes@Si3N4 (CF/CNTs@Si3N4) heterostructure was constructed by the chemical vapor infiltration process. The optimally grown 1D CNTs embedded in 3D CF/Si3N4 are utilized to provide abundant nanointerface coupling effects to compensate for the excessive increase in the conductive loss during rising temperature to realize a self-adjustment in response to high temperature. A high-efficiency EM absorption over a wide temperature range from 25 to 480 °C was achieved (with a ≥90% absorbing ratio covering the whole X-band). In addition, the Si3N4 coating can improve the thermal stability of the carbon matrix and maintain the tailored inner structure. Multiple investigations into other environmental adaptabilities also exhibited the application perspective of such a heterostructure. This work points out a new strategy for preparing designable, efficient, and high-temperature applicable EAMs, promoting the diverse development of electronic devices.
Collapse
Affiliation(s)
- Xiaoke Lu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Xin Li
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Yuchen Cao
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Wenjie Zhu
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Yijin Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Zhaowen Ren
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Dongmei Zhu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
15
|
Accordion-like reduced graphene oxide embedded with Fe nanoparticles between layers for tunable and broadband electromagnetic wave absorption. J Colloid Interface Sci 2022; 628:1019-1030. [DOI: 10.1016/j.jcis.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
|
16
|
Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. MATERIALS 2022; 15:ma15144845. [PMID: 35888312 PMCID: PMC9321174 DOI: 10.3390/ma15144845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
The design of hierarchical structures from biomass has become one of the hottest subjects in the field of microwave absorption due to its low cost, vast availability and sustainability. A kapok-fiber-derived carbon microtube was prepared by facile carbonization, and the relation between the structure and properties of the carbonized kapok fiber (CKF) was systematically investigated. The hollow tubular structures afford the resulting CKF composites with excellent microwave-absorbing performance. The sample with a 30 wt.% loading of CKF in paraffin demonstrates the strongest microwave attenuation capacity, with a minimum reflection loss of −49.46 dB at 16.48 GHz and 2.3 mm, and an optimized effective absorption bandwidth of 7.12 GHz (10.64–17.76 GHz, 2.3 mm) that covers 34% of the X-band and 96% of the Ku-band. Further, more than 90% of the incident electromagnetic wave in the frequency from 4.48 GHz to 18.00 GHz can be attenuated via tuning the thickness of the CKF-based absorber. This study outlines a foundation for the development of lightweight and sustainable microwave absorbers with a high absorption capacity and broad effective absorption bandwidth.
Collapse
|
17
|
Song S, Li H, Liu P, Peng X. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding. Carbohydr Polym 2022; 287:119347. [DOI: 10.1016/j.carbpol.2022.119347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
|
18
|
Ren S, Yu H, Wang L, Huang Z, Lin T, Huang Y, Yang J, Hong Y, Liu J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. NANO-MICRO LETTERS 2022; 14:68. [PMID: 35217977 PMCID: PMC8881588 DOI: 10.1007/s40820-022-00808-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/12/2023]
Abstract
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
Collapse
Affiliation(s)
- Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhikun Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tengfei Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|