1
|
Shan L, Wang J, Tu H, Zhang W, Li H, Slezak P, Lu F, Lee D, Hu E, Geng Z, Lan G, Xie R. Drug delivery under cover of erythrocytes extends drug half-life: A thrombolytic targeting therapy utilizing microenvironment-responsive artificial polysaccharide microvesicles. Carbohydr Polym 2024; 343:122505. [PMID: 39174110 DOI: 10.1016/j.carbpol.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The development of thrombolytic drug carriers capable of thrombus-targeting, prolonged circulation time, intelligent responsive release, and the ability to inhibit thrombotic recurrences remains a promising but significant challenge. To tackle this, an artificial polysaccharide microvesicle drug delivery system (uPA-CS/HS@RGD-ODE) was constructed. It is composed of cationic chitosan and anionic heparin assembled in a layer by layer structure, followed by surface modification using RGD peptide and 2-(N-oxide-N,N-diethylamino) ethylmethacrylate (ODE) before encapsulation of urokinase-type plasminogen activator (uPA). The effect of chitosan on the basic performances of uPA-CS/HS@RGD-ODE was estimated. The in vitro results suggest the uPA carrier, CS/HS@RGD-ODE, displayed outstanding targeting specific to activated platelets (61 %) and microenvironment-responsiveness at pH 6.5, facilitating thrombus-targeting and a controlled drug release, respectively. Most importantly, in vivo experiment suggests ODE from uPA-CS/HS@RGD-ODE substantially extends the half-life of uPA (120 min), as uPA-CS/HS@RGD-ODE can adhere onto erythrocytes and deliver uPA under cover of erythrocytes enabling a prolonged circulation time in the bloodstream. Further tail vein and abdominal aorta thrombosis models confirmed uPA-CS/HS@RGD-ODE exhibited superior targeting and thrombolysis capabilities compared to systemic administration of free uPA. To the knowledge of authors, this may be the first study to develop new drug carriers for delivery of thrombolytic drugs under the cover of erythrocytes for extended drug half-lives.
Collapse
Affiliation(s)
- Lianqi Shan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Junsu Wang
- Chongqing Customs, Chongqing 400044, China
| | - Hongyu Tu
- Chongqing Customs, Chongqing 400044, China
| | - Wenhan Zhang
- College of Computer and Information Science and College of Software, Southwest University, Chongqing 400715, China
| | - He Li
- Department of Geriatric Medicine, Wenzhou Ouhai District Chinese and Western Medical Association Hospital, Wenzhou 325000, China
| | - Paul Slezak
- Ludwig Boltzmann Institute for Traumatology, AUVA Research Center, 1200 Vienna, Austria
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering and Department of Polymer·Nano Science and Technology, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong.
| | - Zhen Geng
- Institute of Translational Medicine, Organoid Research Center, and National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Department of Geriatric Medicine, Wenzhou Ouhai District Chinese and Western Medical Association Hospital, Wenzhou 325000, China.
| |
Collapse
|
2
|
Zhang T, Ren H, Qin H, Liu X, Li B, Zheng X. Light-Armed Nitric Oxide-Releasing Micromotor In Vivo. NANO LETTERS 2024; 24:12452-12460. [PMID: 39319576 DOI: 10.1021/acs.nanolett.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The delivery of NO at a high spatiotemporal precision is important but still challenging for existing NO-releasing platforms due to the lack of precise motion control and limited biomedical functions. In this work, we propose an alternative strategy for developing the light-armed nitric oxide-releasing micromotor (LaNorM), in which a main light beam was employed to navigate the microparticle and stimulate NO release and an auxiliary light beam was used to cooperate with the released NO to act as a remotely controlled scalpel for cell separation. Benefiting from the advantages of fully controlled locomotion, photostimulated NO release, and microsurgery ability at the single-cell level, the proposed LaNorM could enable a series of biomedical applications in vivo, including the separation of flowing emboli, selective removal of a specific thrombus, and inhibition of thrombus growth, which may provide new insight into the precise delivery of NO and the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Haojiang Ren
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Xiaoshuai Liu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| |
Collapse
|
3
|
Kichatov B, Korshunov A, Sudakov V. Chemical magnetism - surface force to move motors. Phys Chem Chem Phys 2024; 26:24542-24552. [PMID: 39268693 DOI: 10.1039/d4cp02537g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
If redox reactions occur on the surface of a motor and a current loop arises, then in a non-uniform magnetic field, in addition to the usual magnetic force, such a motor will also be affected by a chemical magnetic force. The chemical magnetic force belongs to the class of surface forces. Here we analyze for the first time the properties of chemical magnets, which consist of three dissimilar metals, as well as the magnetic field generated by a chemical magnet using paramagnetic nanoparticles. The results of the study show that the chemical magnetic force depends on the concentration and type of electrolyte, the pH of the solution, the temperature, and the structure of the chemical magnet. The results obtained can contribute to the creation of devices where chemical energy is directly converted into kinetic energy of motion.
Collapse
Affiliation(s)
- Boris Kichatov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Alexey Korshunov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Vladimir Sudakov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| |
Collapse
|
4
|
Yang N, Qian Z, Yuan R, Li W, Tan X, Liu Z, Zhang Q, Ge L, Liu L. NIR Light-Fuse Drug-Free Photothermal Armor-Piercing Microcapsule for Femoral Vein Thrombosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312191. [PMID: 38488706 DOI: 10.1002/smll.202312191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Indexed: 08/23/2024]
Abstract
Acute thrombosis and its complications are leading global causes of disability and death. Existing thrombolytic drugs, such as alteplase and urokinase (UK), carry a significant bleeding risk during clinical treatments. Thus, the development of a novel thrombolysis strategy is of utmost urgency. Based on the previous work, the hollow structure of microcapsules (MC) is fabricated. Subsequently, armor-piercing MC, known as Fucoidan/S-Nitrosoglutathione/Melanin@MC (FGM@MC) is obtained, using a layer-by-layer (LBL) self-assembly method. Utilizing near-infrared (NIR) light as a trigger, the FGM@MC demonstrated photothermal thrombolysis at the site of thrombus due to its stable and outstanding photothermal properties. Simultaneously, photothermal stimulation leads to the release of a significant amount of nitric oxide from the FGM@MC, resulting in cavitation effects for mechanical thrombolysis. In vivo experiments confirmed the stable release of nitric oxide under NIR light irradiation. Treatment of femoral vein thrombosis in rats revealed that the thrombolytic effectiveness of FGM@MC+NIR (53.71%) is comparable to that of UK (59.70%). Notably, FGM@MC does not interfere with the coagulation function of rats and exhibits a favorable safety profile. In conclusion, this study demonstrates that the drug-free armor-piercing microcapsule has significant potential in the treatment of thrombosis, offering a safe and effective alternative to traditional thrombolytic therapies.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zhicheng Qian
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Renqiang Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
5
|
Yuan C, Ye Y, Hu E, Xie R, Lu B, Yu K, Ding W, Wang W, Lan G, Lu F. Thrombotic microenvironment responsive crosslinking cyclodextrin metal-organic framework nanocarriers for precise targeting and thrombolysis. Carbohydr Polym 2024; 334:122058. [PMID: 38553243 DOI: 10.1016/j.carbpol.2024.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.
Collapse
Affiliation(s)
- Caijie Yuan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yaxin Ye
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Guangqian Lan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| | - Fei Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
6
|
Ren T, Mi Y, Wei J, Han X, Zhang X, Zhu Q, Yue T, Gao W, Niu X, Han C, Wei B. Advances in Nano-Functional Materials in Targeted Thrombolytic Drug Delivery. Molecules 2024; 29:2325. [PMID: 38792186 PMCID: PMC11123875 DOI: 10.3390/molecules29102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Thrombotic disease has been listed as the third most fatal vascular disease in the world. After decades of development, clinical thrombolytic drugs still cannot avoid the occurrence of adverse reactions such as bleeding. A number of studies have shown that the application of various nano-functional materials in thrombus-targeted drug delivery, combined with external stimuli, such as magnetic, near-infrared light, ultrasound, etc., enrich the drugs in the thrombus site and use the properties of nano-functional materials for collaborative thrombolysis, which can effectively reduce adverse reactions such as bleeding and improve thrombolysis efficiency. In this paper, the research progress of organic nanomaterials, inorganic nanomaterials, and biomimetic nanomaterials for drug delivery is briefly reviewed.
Collapse
Affiliation(s)
- Tengfei Ren
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China; (T.R.)
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuexi Mi
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Jingjing Wei
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiangyuan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xingxiu Zhang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Qian Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Tong Yue
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China; (T.R.)
| | - Wenhao Gao
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China; (T.R.)
| | - Xudong Niu
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar 161006, China; (T.R.)
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Bing Wei
- School of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| |
Collapse
|
7
|
Jin J, Li Y, Wang S, Xie J, Yan X. Organic nanomotors: emerging versatile nanobots. NANOSCALE 2024; 16:2789-2804. [PMID: 38231523 DOI: 10.1039/d3nr05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.
Collapse
Affiliation(s)
- Jingjun Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Wang B, Wang Q, Chan KF, Ning Z, Wang Q, Ji F, Yang H, Jiang S, Zhang Z, Ip BYM, Ko H, Chung JPW, Qiu M, Han J, Chiu PWY, Sung JJY, Du S, Leung TWH, Yu SCH, Zhang L. tPA-anchored nanorobots for in vivo arterial recanalization at submillimeter-scale segments. SCIENCE ADVANCES 2024; 10:eadk8970. [PMID: 38295172 PMCID: PMC10830105 DOI: 10.1126/sciadv.adk8970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Micro/nanorobots provide a promising approach for intravascular therapy with high precision. However, blood vessel is a highly complex system, and performing interventional therapy in those submillimeter segments remains challenging. While micro/nanorobots can enter submillimeter segments, they may still comprise nonbiodegradable parts, posing a considerable challenge for post-use removal. Here, we developed a retrievable magnetic colloidal microswarm, composed of tPA-anchored Fe3O4@mSiO2 nanorobots (tPA-nbots), to archive tPA-mediated thrombolysis under balloon catheter-assisted magnetic actuation with x-ray fluoroscopy imaging system (CMAFIS). By deploying tPA-nbot transcatheter to the vicinity of the thrombus, the tPA-nbot microswarms were magnetically actuated to the blood clot at the submillimeter vessels with high precision. After thrombolysis, the tPA-nbots can be retrieved via the CMAFIS, as demonstrated in ex vivo organ of human placenta and in vivo carotid artery of rabbit. The proposed colloidal microswarm provides a promising robotic tool with high spatial precision for enhanced thrombolysis with low side effects.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Center for Innovative Medicine, CUHK, Sha Tin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Sha Tin, N.T., Hong Kong, China
| | - Zhipeng Ning
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Shuai Jiang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
| | - Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Sha Tin, N.T., Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Sha Tin, N.T., Hong Kong, China
| | | | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, China
| | - Jianguo Han
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Center for Innovative Medicine, CUHK, Sha Tin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Sha Tin, N.T., Hong Kong, China
- Department of Surgery, CUHK, Sha Tin, N.T., Hong Kong, China
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, China
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Sha Tin, N.T., Hong Kong, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, CUHK, Sha Tin, N.T., Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Sha Tin, N.T., Hong Kong, China
- Chow Yuk Ho Technology Center for Innovative Medicine, CUHK, Sha Tin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Sha Tin, N.T., Hong Kong, China
- Department of Surgery, CUHK, Sha Tin, N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, CUHK, Sha Tin, N.T., Hong Kong, China
| |
Collapse
|
9
|
Su M, Ji X, Liu F, Li Z, Yan D. Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters. Mini Rev Med Chem 2024; 24:300-329. [PMID: 37102481 DOI: 10.2174/1389557523666230427152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 04/28/2023]
Abstract
Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.
Collapse
Affiliation(s)
- Ma Su
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Xingyue Ji
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Feng Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Zhang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Duanyang Yan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| |
Collapse
|
10
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Zhou B, Chen H, Ji C, Yin M. Regulating steric hindrances of perylenediimide to construct NIR photothermal J-aggregates with a large red-shift. NANOSCALE 2023; 15:17350-17355. [PMID: 37873593 DOI: 10.1039/d3nr03571a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Perylene diimide (PDI)-based photothermal agents (PTAs) possess excellent stability and high photothermal conversion efficiency. However, developing PDIs with strong near-infrared absorption under biological conditions remains a challenge. In this study, we introduce a novel approach to facilitate the formation of J-aggregate-based PTAs with significantly red-shifted absorption by modulating steric hindrances of PDIs. PDIA, featuring larger steric hindrances at the bay position and smaller steric hindrances at the imide position, self-assembles into J-aggregates which exhibit a remarkable red-shift of over 100 nm. After encapsulation by DPSE-PEG, PDIA nanoparticles (PDIA-NPs) demonstrated a uniform and stable size, while retaining their significant red-shift. In vitro experiments demonstrated the great potential of PDIA-NPs in photothermal therapies for tumors and thrombi under 808 nm laser irradiation. This research provides valuable insights into the design of stable J-aggregates based on PDIs suitable for biological applications, paving the way for the development of more effective PTAs.
Collapse
Affiliation(s)
- Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Kirla H, Henry DJ, Jansen S, Thompson PL, Hamzah J. Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease. Clin Ther 2023; 45:1060-1068. [PMID: 37783646 DOI: 10.1016/j.clinthera.2023.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. The current CVD therapeutic drugs require long-term treatment with high doses, which increases the risk of adverse effects while offering only marginal treatment efficacy. Silica nanoparticles (SNPs) have been proven to be an efficient drug delivery vehicle for numerous diseases, including CVD. This article reviews recent progress and advancement in targeted delivery for drugs and diagnostic and theranostic agents using silica nanoparticles to achieve therapeutic efficacy and improved detection of CVD in clinical and preclinical settings. METHODS A search of PubMed, Scopus, and Google Scholar databases from 1990 to 2023 was conducted. Current clinical trials on silica nanoparticles were identified through ClinicalTrials.gov. Search terms include silica nanoparticles, cardiovascular diseases, drug delivery, and therapy. FINDINGS Silica nanoparticles exhibit biocompatibility in biological systems, and their shape, size, surface area, and surface functionalization can be customized for the safe transport and protection of drugs in blood circulation. These properties also enable effective drug uptake in specific tissues and controlled drug release after systemic, localized, or oral delivery. A range of silica nanoparticles have been used as nanocarrier for drug delivery to treat conditions such as atherosclerosis, hypertension, ischemia, thrombosis, and myocardial infarction. IMPLICATIONS The use of silica nanoparticles for drug delivery and their ongoing development has emerged as a promising strategy to improve the effectiveness of drugs, imaging agents, and theranostics with the potential to revolutionize the treatment of CVD.
Collapse
Affiliation(s)
- Haritha Kirla
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia.
| | - David J Henry
- Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Shirley Jansen
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
13
|
You Q, Shao X, Wang J, Chen X. Progress on Physical Field-Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. SMALL METHODS 2023; 7:e2300426. [PMID: 37391275 DOI: 10.1002/smtd.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| |
Collapse
|
14
|
Djayanti K, Maharjan P, Cho KH, Jeong S, Kim MS, Shin MC, Min KA. Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci 2023; 24:ijms24076349. [PMID: 37047329 PMCID: PMC10094416 DOI: 10.3390/ijms24076349] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
With advances in nanotechnology, nanoparticles have come to be regarded as carriers of therapeutic agents and have been widely studied to overcome various diseases in the biomedical field. Among these particles, mesoporous silica nanoparticles (MSNs) have been investigated as potential nanocarriers to deliver drug molecules to various target sites in the body. This review introduces the physicochemical properties of MSNs and synthesis procedures of MSN-based nanoplatforms. Moreover, we focus on updating biomedical applications of MSNs as a carrier of therapeutic or diagnostic cargo and review clinical trials using silica-nanoparticle-based systems. Herein, on the one hand, we pay attention to the pharmaceutical advantages of MSNs, including nanometer particle size, high surface area, and porous structures, thus enabling efficient delivery of high drug-loading content. On the other hand, we look through biosafety and toxicity issues associated with MSN-based platforms. Based on many reports so far, MSNs have been widely applied to construct tissue engineering platforms as well as treat various diseases, including cancer, by surface functionalization or incorporation of stimuli-responsive components. However, even with the advantageous aspects that MSNs possess, there are still considerations, such as optimizing physicochemical properties or dosage regimens, regarding use of MSNs in clinics. Progress in synthesis procedures and scale-up production as well as a thorough investigation into the biosafety of MSNs would enable design of innovative and safe MSN-based platforms in biomedical fields.
Collapse
|
15
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
16
|
Zhang H, Zhao Z, Sun S, Zhang S, Wang Y, Zhang X, Sun J, He Z, Zhang S, Luo C. Molecularly self-fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke. Nat Commun 2023; 14:255. [PMID: 36650139 PMCID: PMC9845202 DOI: 10.1038/s41467-023-35895-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Thrombotic cerebro-cardiovascular diseases are the leading causes of disability and death worldwide. However, current drug therapeutics are compromised by narrow therapeutic windows, unsatisfactory thrombolysis effects, severe bleeding events, and high recurrence rates. In this study, we exploit a self-propelling nano-penetrator with high fuel loading and controllable motion features, which is molecularly co-assembled using a photothermal photosensitizer (DiR) and a photothermal-activable NO donor (BNN6). The precisely engineered nano-penetrator of the BNN6-DiR fuel pair shows distinct advantages in terms of NO productivity and autonomous motion under laser irradiation. In animal models of artery/vein thrombosis and acute ischemic stroke, the self-fueled nano-penetrator enables self-navigated thrombus-homing accumulation, self-propelled clot deep penetration, fluorescence image-guided photothermal/mechanical thrombolysis, and NO-mediated prevention of thrombosis recurrence and acute ischemic stroke salvage. As expected, the molecularly self-fueled nano-penetrator displayed favorable therapeutic outcomes without bleeding risk compared to the clinically available thrombolytic drug. This study offers a facile, safe, and effective nonpharmaceutical modality towards the clinical treatment of thrombosis and ischemic stroke.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shengnan Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
17
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
18
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
19
|
Hosseini M, Babayekhorasani F, Guo Z, Liang K, Chen V, Spicer PT. Propulsion, deformation, and confinement response of hollow nanocellulose millimotors. J Colloid Interface Sci 2022; 628:435-445. [PMID: 35998466 DOI: 10.1016/j.jcis.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS Micromotor and nanomotor particles are typically made using dense solid particles that can sediment or be trapped in confined flow environments. Creation of much larger motors should be possible if a very low-density system is used with sufficient strength to carry liquid and still experience propulsive motion. Light, dense millimotors should also be able to deform more than dense solid ones in constrictions. EXPERIMENTS Millimotors are created from permeable capsules of bacterial cellulose that are coated with catalse-containing metal-organic frameworks, enabling reactive propulsion in aqueous hydrogen peroxide. The motion of the motors is quantified using particle tracking and the deformation is measured using microcapillary compression and flow through confined channels. FINDINGS Two different propulsion mechanisms are dominant depending on the motor surface chemistry: oxygen bubbles are expelled from hydrophilic millimotors, driving motion via recoil force and buoyancy. Hydrophobic millimotors remain attached to growing bubbles and move by buoyancy alone. Despite their large size, the low-density capsules compress to pass through contractions that would impede and be blocked by solid motors. The sparse structure but relatively large size of the motors enables them to transport significant volumes of liquid using minimal solid mass as a motor support structure.
Collapse
Affiliation(s)
- Maryam Hosseini
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | | | - Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Queensland 4072, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air-liquid interface. J Colloid Interface Sci 2022; 627:774-782. [PMID: 35901558 DOI: 10.1016/j.jcis.2022.07.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The problem of the development of miniature motors able to move on the air-liquid interface at low Reynolds numbers is a crucial challenge due to dominating role of viscous force. To solve this problem the chemical generation of gas can be used. Generated gas pushes liquid out from the surfer surface, so the resistance force is reduced. EXPERIMENTS Surfer composed of TiO2 nanoparticles and ferromagnetic cobalt microparticles moves at the interface of an aqueous solution of hydrogen peroxide under the action of magnetic force. After irradiation with UV or visible light, the gas cavern is formed at the surfer surface due to photo-catalytic decomposition of hydrogen peroxide. As a result, the area of surfer contact with liquid is reduced. FINDINGS The resistance force acting on the surfer is reduced due to the liquid pushing out from the surfer surface. This effect is strengthened with the increase in the intensity of gas generation. The resistance force is increased when increasing the liquid viscosity or using a surfactant. The proposed method allows control of the velocity of the motors in a rather wide range by changing the gradient of the magnetic field and parameters of light.
Collapse
|
21
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
22
|
Savchak OK, Wang N, Ramos-Docampo MA, de Dios Andres P, Sebastião AM, Ribeiro FF, Armada-Moreira A, Städler B, Vaz SH. Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. J Mater Chem B 2022; 10:4672-4683. [PMID: 35674248 DOI: 10.1039/d2tb00393g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supporting mammalian cells against reactive oxygen species such as hydrogen peroxide (H2O2) is essential. Bottom-up synthetic biology aims to integrate designed artificial units with mammalian cells. Here, we used manganese dioxide nanosheets (MnO2-NSs) as catalytically active entities that have superoxide dismutase-like and catalase-like activities. The integration of these MnO2-NSs into 7 μm reactors was able to assist SH-SY5Y neuroblastoma cells when stressed with H2O2. Complementary, Janus-shaped 800 nm reactors with one hemisphere coated with MnO2-NSs showed directed locomotion in cell media with top speeds up to 50 μm s-1 when exposed to 300 mM H2O2 as a fuel, while reactors homogeneously coated with MnO2-NSs were not able to outperform Brownian motion. These Janus-shaped reactors were able to remove H2O2 from the media, protecting cells cultured in the proximity. This effort advanced the use of bottom-up synthetic biology concepts in neuroscience.
Collapse
Affiliation(s)
- Oksana K Savchak
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nanying Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Paula de Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Adam Armada-Moreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal. .,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
23
|
Advanced drug delivery system against ischemic stroke. J Control Release 2022; 344:173-201. [DOI: 10.1016/j.jconrel.2022.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|