1
|
Wang K, Zhang H, Jin N, Zhou Y, Guo X, Zhong W, Li X, Li X, Zhang Y. Interfacial modification of recombinant protein for immunoglobulin G adsorption with spindle-shaped MOF as nano molecular containers. Talanta 2024; 280:126535. [PMID: 39121618 DOI: 10.1016/j.talanta.2024.126535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Development of fresh solid phase extractant is critical for selective separation and purification of special proteins. Herein, we demonstrated a recombinant Staphylococcal Protein G (rSPG) with a His-tag modified the novel single-metal organic framework (rSPG@Ni-MOF-74). The proposed solid-phase extraction material possessed a uniform spindle-shaped structure, large surface area (709.60 m2 g-1) and pore volume (0.08 m3 g-1), high metal content (22.57 wt%), which facilitated the interaction between host and guest. As results, the composite displayed outstanding selective recognition and adsorption of IgG, due to synergistic effect of the binding ability of rSPG with the Fc region of IgG, maintained through hydrogen bonding and electrostatic attraction, as well as hydrophobic interaction. The adsorption performance and mechanism of rSPG@Ni-MOF-74 have been fully investigated. Additionally, the rSPG@Ni-MOF-74 composite could effectively separate IgG from serum obtained from healthy humans, with the purity of the separated IgG verified through SDS-PAGE analysis. Furthermore, LC-MS/MS analysis identified a high content of IgG (55.3 %) in the eluate from rSPG@Ni-MOF-74, suggesting the great potential of rSPG@Ni-MOF-74 in IgG separation and enrichment from complex matrix.
Collapse
Affiliation(s)
- Kai Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Nishan Jin
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yutian Zhou
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xuwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
2
|
González D, Pazo-Carballo C, Camú E, Hidalgo-Rosa Y, Zarate X, Escalona N, Schott E. Adsorption properties of M-UiO-66 (M = Zr(IV); Hf(IV) or Ce(IV)) with BDC or PDC linker. Dalton Trans 2024; 53:10486-10498. [PMID: 38840533 DOI: 10.1039/d4dt00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(IV), Ce(IV), and Hf(IV), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Qst) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol-1 observing differences in adsorption capacities between 1.15 and 4.72 mmol g-1 at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Qst with defects.
Collapse
Affiliation(s)
- Diego González
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| | - Cesar Pazo-Carballo
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Esteban Camú
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Yoan Hidalgo-Rosa
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| |
Collapse
|
3
|
Yousef S, Tonkonogovas A, Mohamed A. Graphene-modified MIL-125-NH 2 mixed matrix membranes for efficient H 2 and CH 4 purification. CHEMOSPHERE 2024; 352:141362. [PMID: 38309606 DOI: 10.1016/j.chemosphere.2024.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
This study investigates the performance of the mixed matrix membranes (MMMs) incorporating hybrid fillers of metal-organic framework (MIL-125-NH2) and graphene nanosheets (GNs) for enhanced methane (CH₄) and hydrogen (H₂) separation in the purification sector. The physico-chemical properties of the MMMs were evaluated by SEM, XRD, FTIR, AFM, TGA, DTG, and Brunauer-Emmett-Teller. The permeability and selectivity of the MMMs were determined using different single gases (CO2, N2, H2, and CH4) at various temperatures (20-60 °C). Optimization of fabrication parameters resulted in a significant improvement in porosity and roughness of the fabricated MMMs. The permeabilities of the MOF/PES membrane are 20.3 (CO2), 23.9 (N2), 32.2 (CH4), and 24.1 (H2) x 104 Barrer, while incorporating 0.05 wt% of GNs into the MOF/PES membrane improved the permeability by 36 % (CO2), 41 % (N2), 31 % (CH4), and 370 % (H2). In addition, the H2/CO2 and H2/N2 selectivities of the MMMs significantly increased up to 4 and 3.3, with an improvements of 236 % and 230 %, respectively, compared to the MOF/PES membrane. Furthermore, the CH4/CO2 and CH4/N2 selectivities of the MMMs decreased by 4 %. Therefore, a hybrid filler (10 wt % of MIL-125-NH2 and 0.05 wt % of GNs is highly recommended to improve the permeability and selectivity of the PES membrane, expanding its potential applications in CH4 and H2 purification.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424, Kaunas, Lithuania
| | - Andrius Tonkonogovas
- Lithuanian Energy Institute, Laboratory of Heat Equipment Research and Testing, Breslaujos 3, LT 44403, Kaunas, Lithuania
| | - Alaa Mohamed
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
4
|
Zakaria DS, Rozi SKM, Halim HNA, Mohamad S, Zheng GK. New porous amine-functionalized biochar-based desiccated coconut waste as efficient CO 2 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16309-16327. [PMID: 38315341 DOI: 10.1007/s11356-024-32285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Climate change caused by the greenhouse gases CO2 remains a topic of global concern. To mitigate the excessive levels of anthrophonic CO2 in the atmosphere, CO2 capture methods have been developed and among these, adsorption is an especially promising method. This paper presents a series of amine functionalized biochar obtained from desiccated coconut waste (amine-biochar@DCW) for use as CO2 adsorbent. They are ethylenediamine-functionalized biochar@DCW (EDA-biochar@DCW), diethylenetriamine-functionalized biochar@DCW (DETA-biochar@DCW), triethylenetetramine-functionalized biochar@DCW (TETA-biochar@DCW), tetraethylenepentamine-functionalized biochar@DCW (TEPA-biochar@DCW), and pentaethylenehexamine-functionalized biochar@DCW (PEHA-biochar@DCW). The adsorbents were obtained through amine functionalization of biochar and they are characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The CO2 adsorption study was conducted isothermally and using a thermogravimetric analyzer. From the results of the characterization analyses, a series of amine-biochar@DCW adsorbents had larger specific surface area in the range of 16.2 m2/g-37.1 m2/g as compare to surface area of pristine DCW (1.34 m2/g). Furthermore, the results showed an increase in C and N contents as well as the appearance of NH stretching, NH bending, CN stretching, and CN bending, suggesting the presence of amine on the surface of biochar@DCW. The CO2 adsorption experiment shows that among the amine modified biochar adsorbents, TETA-biochar@DCW has the highest CO2 adsorption capacity (61.78 mg/g) when using a mass ratio (m:m) of biochar@DCW:TETA (1:2). The adsorption kinetics on the TETA-biochar@DCW was best fitted by the pseudo-second model (R2 = 0.9998), suggesting the adsorption process occurs through chemisorption. Additionally, TETA-biochar@DCW was found to have high selectivity toward CO2 gas and good reusability even after five CO2 adsorption-desorption cycles. The results demonstrate the potential of novel CO2 adsorbents based on amine functionalized on desiccated coconut waste biochar.
Collapse
Affiliation(s)
- Dina Sofiea Zakaria
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| | - Siti Khalijah Mahmad Rozi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia.
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Hairul Nazirah Abdul Halim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ghee Kang Zheng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| |
Collapse
|
5
|
Shams M, Niazi Z, Saeb MR, Mozaffari Moghadam S, Mohammadi AA, Fattahi M. Tailoring the topology of ZIF-67 metal-organic frameworks (MOFs) adsorbents to capture humic acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115854. [PMID: 38154210 DOI: 10.1016/j.ecoenv.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4 90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.
Collapse
Affiliation(s)
- Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Sina Mozaffari Moghadam
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering &Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
6
|
Feng L, Zhang Q, Su J, Ma B, Wan Y, Zhong R, Zou R. Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:24. [PMID: 38202479 PMCID: PMC10780323 DOI: 10.3390/nano14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
MOF-74 (metal-organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage.
Collapse
Affiliation(s)
- Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Qiuning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Bing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
7
|
Wauteraerts N, Tu M, Chanut N, Rodríguez-Hermida S, Gandara-Loe J, Ameloot R. Vapor-assisted synthesis of the MOF-74 metal-organic framework family from zinc, cobalt, and magnesium oxides. Dalton Trans 2023; 52:17873-17880. [PMID: 37975724 DOI: 10.1039/d3dt01785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, we investigate the vapor-assisted synthesis of the metal-organic framework MOF-74 starting from three metal oxides (ZnO, CoO, and MgO). Depending on the nature of the added vapor (H2O, DMF, DMSO), the metal oxide, and the temperature, the outcome of the reaction can be directed towards the desired porous phase. Ex situ and in situ XRD measurements reveal the formation of an intermediate phase during the reaction of MgO with H4dobdc, while the MOF-74 phase forms directly for ZnO and CoO. The reduced CO2 uptake of the resulting materials compared to solvothermally prepared MOFs might be offset by the convenience of the presented route and the promise of a high space time yield.
Collapse
Affiliation(s)
- Nathalie Wauteraerts
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Min Tu
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- 2020 X-Lab and State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Nicolas Chanut
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Sabina Rodríguez-Hermida
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Servizos de Apoio á Investigación, Universidade da Coruña, Campus Elviña s/n 15071, A Coruña, Spain
| | - Jesus Gandara-Loe
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Rob Ameloot
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
9
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
10
|
Cao J, Wang Q, Hu D, Li J, Qi A. Surface Properties of Fluorine-Functionalized Metal-Organic Frameworks Based on Inverse Gas Chromatography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294901 DOI: 10.1021/acs.langmuir.3c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The introduction of the concept of surface properties can help us to better analyze the basic physicochemical property changes of metal-organic framework (MOF) materials before and after fluorine functional group treatment. In this study, several polar and nonpolar probes were selected to determine the surface properties, including surface-dispersive free energy, Lewis acid-base constants of Ni-MOF-74, and perfluoro carboxylic acid-modified Ni-MOF-74-Fn (n = 3, 5, and 7) in the range of 343.15-383.15 K by inverse gas chromatography (IGC). It was observed that the surface energy of the treated Ni-MOF-74-Fn showed a substantial decrease with the growth of the perfluorocarbon alkyl chains and the increase in surface roughness. In addition, Lewis acidic sites exposed by the Ni-MOF-74 material after adopting modification with fluorine functional groups increased with the increase of perfluorinated carboxylic acid chains, and their surface properties changed from amphiphilic acidic to strongly acidic. These results not only enrich the basic physical property data of Ni-MOF-74 but also provide more theoretical basis for the fluorinated functionalized custom-designed MOFs and enrich their applications in the fields of multiphase catalysis, gas adsorption, and chromatographic separation.
Collapse
Affiliation(s)
- Jingwen Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Qiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Dingkai Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Jiaqiu Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| | - Aifei Qi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P.R. China
| |
Collapse
|
11
|
Zhang L, Zhang M, Yang P, Zhang Y, Fei J, Xie Y. Electrochemical Behavior of β-Cyclodextrin-Ni-MOF-74/Reduced Graphene Oxide Sensors for the Ultrasensitive Detection of Rutin. Molecules 2023; 28:4604. [PMID: 37375159 DOI: 10.3390/molecules28124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Rutin, as a biological flavonoid glycoside, has very important medicinal value. The accurate and rapid detection of rutin is of great significance. Herein, an ultrasensitive electrochemical rutin sensor based on β-cyclodextrin metal-organic framework/reduced graphene oxide (β-CD-Ni-MOF-74/rGO) was constructed. The obtained β-CD-Ni-MOF-74 was characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption and desorption. The β-CD-Ni-MOF-74/rGO presented good electrochemical properties benefiting from the large specific surface area and good adsorption enrichment effect of β-CD-Ni-MOF-74 and the good conductivity of rGO. Under optimal conditions for the detection of rutin, the β-CD-Ni-MOF-74/rGO/GCE showed a wider linear range (0.06-1.0 μM) and lower detection limit (LOD, 0.68 nM, (S/N = 3)). Furthermore, the sensor shows good accuracy and stability for the detection of rutin in actual samples.
Collapse
Affiliation(s)
- Li Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Mengting Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Pingping Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Yixi Xie
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
12
|
Katare A, Kumar S, Kundu S, Sharma S, Kundu LM, Mandal B. Mixed Matrix Membranes for Carbon Capture and Sequestration: Challenges and Scope. ACS OMEGA 2023; 8:17511-17522. [PMID: 37251167 PMCID: PMC10210031 DOI: 10.1021/acsomega.3c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for the increase in global temperature, making carbon capture and sequestration (CCS) crucial for controlling global warming. Traditional CCS methods such as absorption, adsorption, and cryogenic distillation are energy-intensive and expensive. In recent years, researchers have focused on CCS using membranes, specifically solution-diffusion, glassy, and polymeric membranes, due to their favorable properties for CCS applications. However, existing polymeric membranes have limitations in terms of permeability and selectivity trade-off, despite efforts to modify their structure. Mixed matrix membranes (MMMs) offer advantages in terms of energy usage, cost, and operation for CCS, as they can overcome the limitations of polymeric membranes by incorporating inorganic fillers, such as graphene oxide, zeolite, silica, carbon nanotubes, and metal-organic frameworks. MMMs have shown superior gas separation performance compared to polymeric membranes. However, challenges with MMMs include interfacial defects between the polymeric and inorganic phases, as well as agglomeration with increasing filler content, which can decrease selectivity. Additionally, there is a need for renewable and naturally occurring polymeric materials for the industrial-scale production of MMMs for CCS applications, which poses fabrication and reproducibility challenges. Therefore, this research focuses on different methodologies for carbon capture and sequestration techniques, discusses their merits and demerits, and elaborates on the most efficient method. Factors to consider in developing MMMs for gas separation, such as matrix and filler properties, and their synergistic effect are also explained in this Review.
Collapse
Affiliation(s)
- Aviti Katare
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shubham Kumar
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sukanya Kundu
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swapnil Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lal Mohan Kundu
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam 781039, India
| | - Bishnupada Mandal
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Liu X, Sun Y, Wang C, Lv L, Liang Y. Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Radon is one of the 19 carcinogenic substances identified by the World Health Organization, posing a significant threat to human health and the environment. Properly removing radon under ambient conditions remains challenging. Compared with traditional radon−adsorbent materials such as activated carbon and zeolite, metal–organic framework (MOF) materials provide a high specific surface area, rich structure, and designability. However, MOF material powders demonstrate complications regarding practical use, such as easy accumulation, deactivation, and difficult recovery. Ni−MOF−74 was in situ grown on a porous polyacrylic acid (PA) spherical substrate via stepwise negative pressure impregnation. Ni−MOF−74 was structured as one−dimensional rod−shaped crystals (200–300 nm) in large−pore PA microspheres, whose porous structure increased the diffusion of radon gas. The radon adsorption coefficient of a Ni−MOF−74@PA−polyethyleneimine composite material was 0.49 L/g (293 K, relative humidity of 20%, air carrier). In comparison with pristine Ni−MOF−74 powder, our composite material exhibited enhanced adsorption and longer penetration time. The radon adsorption coefficient of the composite material was found to be from one to two orders of magnitude higher than that of zeolite and silica gel. The proposed material can be used for radon adsorption while overcoming the formation problem of MOF powders. Our preparation approach can provide a reference for the composite process of MOFs and polymers.
Collapse
Affiliation(s)
- Xi Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yuan Sun
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chunlai Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Li Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Zhao G, Li Z, Cheng B, Zhuang X, Lin T. Hierarchical Porous Metal Organic Framework Aerogel for Highly Efficient CO2 Adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Frías-Ureña PM, Bárcena-Soto M, Orozco-Guareño E, Gutiérrez-Becerra A, Mota-Morales JD, Chavez K, Soto V, Rivera-Mayorga JA, Escalante-Vazquez JI, Gómez-Salazar S. Porous Structural Properties of K or Na-Co Hexacyanoferrates as Efficient Materials for CO 2 Capture. MATERIALS (BASEL, SWITZERLAND) 2023; 16:608. [PMID: 36676342 PMCID: PMC9863694 DOI: 10.3390/ma16020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The stoichiometry of the components of hexacyanoferrate materials affecting their final porosity properties and applications in CO2 capture is an issue that is rarely studied. In this work, the effect that stoichiometry of all element components and oxidation states of transition metals has on the structures of mesoporous K or Na-cobalt hexacyanoferrates (CoHCFs) and CO2 removal is reported. A series of CoHCFs model systems are synthesized using the co-precipitation method with varying amounts of Co ions. CoHCFs are characterized by N2 adsorption, TGA, FTIR-ATR, XRD, and XPS. N2 adsorption results reveal a more developed external surface area (72.69-172.18 m2/g) generated in samples containing mixtures of K+/Fe2+/Fe3+ ions (system III) compared to samples with Na+/Fe2+ ions (systems I, II). TGA results show that the porous structure of CoHCFs is affected by Fe and Co ions oxidation states, the number of water molecules, and alkali ions. The formation of two crystalline cells (FCC and triclinic) is confirmed by XRD results. Fe and Co oxidation states are authenticated by XPS and allow for the confirmation of charges involved in the stabilization of CoCHFs. CO2 removal capacities (3.04 mmol/g) are comparable with other materials reported. CO2 adsorption kinetics is fast (3-6 s), making CoHCFs attractive for continuous operations. Qst (24.3 kJ/mol) reveals a physical adsorption process. Regeneration effectiveness for adsorption/desorption cycles indicates ~1.6% loss and selectivity (~47) for gas mixtures (CO2:N2 = 15:85). The results of this study demonstrate that the CoHCFs have practical implications in the potential use of CO2 capture and flue gas separations.
Collapse
Affiliation(s)
- Paloma M. Frías-Ureña
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Maximiliano Bárcena-Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Eulogio Orozco-Guareño
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Alberto Gutiérrez-Becerra
- Departamento de Ciencias Básicas y Aplicadas, Universidad de Guadalajara (CUTonala), Avenue Nuevo Periférico 555, Tonalá 45425, Mexico
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Karina Chavez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Víctor Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
- Graduate Program in Materials Science, Departamento de Ingeniería de Proyectos, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José A. Rivera-Mayorga
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José I. Escalante-Vazquez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Sergio Gómez-Salazar
- Departamento de Ingeniería Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
16
|
Density and Viscosity of Polyethylene Glycol 400 + 1,2-Propanediamine Binary Mixtures at T = (293.15–318.15) K and Spectral Analysis. J SOLUTION CHEM 2023. [DOI: 10.1007/s10953-022-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Fu L, Ren Z, Si W, Ma Q, Huang W, Liao K, Huang Z, Wang Y, Li J, Xu P. Research progress on CO2 capture and utilization technology. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Usman M, Khan MY, Anjum T, Khan AL, Hoque B, Helal A, Hakeem AS, Al-Maythalony BA. Controlled Covalent Functionalization of ZIF-90 for Selective CO 2 Capture & Separation. MEMBRANES 2022; 12:membranes12111055. [PMID: 36363610 PMCID: PMC9698860 DOI: 10.3390/membranes12111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Mixed Matrix Membranes (MMM) with enhanced selectivity and permeability are preferred for gas separations. The porous metal-organic frameworks (MOFs) materials incorporated in them play a crucial part in improving the performance of MMM. In this study, Zeolitic imidazolate frameworks (ZIF-90) are selected to fabricate Polyetherimide (PEI) MMMs owing to their lucrative structural and chemical properties. This work reports new controlled post-synthetic modifications of ZIF-90 (50-PSM-ZIF-90) with ethanolamine to control the diffusion and uptake of CO2. Physical and chemical properties of ZIF-90, such as stability and presence of aldehyde functionality in the imidazolate linker, allow for easy modulation of the ZIF-90 pores and window size to tune the gas transport properties across ZIF-90-based membranes. Effects of these materials were investigated on the performance of MMMs and compared with pure PEI membranes. Performance of the MMMs was evaluated in terms of permeability of different gases and selective separation of CO2 and H2 gas. Results presented that the permeability of all membranes was in the following order, i.e., P(H2) > P(CO2) > P(O2) > P(CH4) > P(C2H6) > P(C3H8) > P(N2), demonstrating that kinetic gas diffusion is the predominant gas transport mode in these membranes. Among all the membranes, permeability of pure PEI membrane was highest for all gases due to the uniform porous morphology. The pure PEI membrane showed highest permeability of H2, which is 486.5 Barrer, followed by 49 Barrer for O2, 29 Barrer for N2, 142 Barrer for CO2, 41 Barrer for CH4, 40 Barrer for C2H6 and 39.6 Barrer for C3H8. Results also confirm the superiority of controlled PSM-ZIF-90-PEI membrane over the pure PEI and ZIF-90-PEI membranes in CO2 and H2 separation performance. The 50-PSM-ZIF-90 PEI membrane exhibited a 20% increase in CO2 separation from methane and a 26% increase over nitrogen compared to the ZIF-90-PEI membrane. The 50-PSM-ZIF-90 PEI membrane showed 15% more H2/O2 separation and 9% more H2/CH4 separation than ZIF-90 PEI membrane. Overall, this study represents the role of controlled PSM in enhancing the property of new materials like ZIF and its application in MMMs fabrication to develop a promising approach for the CO2 capture and separation.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Correspondence:
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Tanzila Anjum
- Department of Chemical Engineering, Lahore Campus, COMSATS University, Islamabad 54000, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, Lahore Campus, COMSATS University, Islamabad 54000, Pakistan
| | - Bosirul Hoque
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Bassem A. Al-Maythalony
- King Abdulaziz City for Science and Technology—Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Materials Discovery Research Unit, Advanced Research Center, Royal Scientific Society, Amman 11941, Jordan
| |
Collapse
|
19
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Afrin S, Khan MW, Haque E, Ren B, Ou JZ. Recent advances in the tuning of the organic framework materials - The selections of ligands, reaction conditions, and post-synthesis approaches. J Colloid Interface Sci 2022; 623:378-404. [PMID: 35594596 DOI: 10.1016/j.jcis.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.
Collapse
Affiliation(s)
- Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Wang B, Yan Y, Ding CF. Metal-organic framework-based sample preparation in proteomics. J Chromatogr A 2022; 1671:462971. [DOI: 10.1016/j.chroma.2022.462971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
|