1
|
Zhang WP, Li YY, Zhao J, Wu K, Xiao H, Li JR. Pt-O-Ce interaction enhanced by Al substitution to promote the acetone degradation through accelerating the breaking of CC bond in acetic acid intermediate. J Colloid Interface Sci 2024; 671:611-620. [PMID: 38820845 DOI: 10.1016/j.jcis.2024.05.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
The reaction rate of volatile organic compounds (VOCs) oxidation is controlled by the rate-limiting step in the total reaction process. This study proposes a novel strategy, by which the rate-limiting step of acetone oxidation is accelerated by enhanced chemical bond interaction with more electrons transfer through Al-substituted CeO2 loaded Pt (Pt/Al-CeO2). Results indicate that the rate-limiting step in the process of acetone oxidation is the decomposition of acetic acid. Al substitution enhances the Pt-O-Ce interaction that transfers more electrons from Pt/Al-CeO2 to acetic acid, promoting the breaking of its CC bond with a lower free energy barrier. Attributing to these, the reaction rate of Pt/Al-CeO2 is 13 times as high as that of Pt/CeO2 and its TOFPt value is 11 times as high as that of Pt/CeO2 at 150 °C. Moreover, the CO2 selectivity of Pt/Al-CeO2 also increases by 22 %. This work establishes the relationship between Pt-O-Ce interaction and acetone oxidation that provides novel perspectives on the development of efficient materials for VOCs oxidation.
Collapse
Affiliation(s)
- Wan-Peng Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junyi Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China
| | - Kun Wu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Jiang Y, Jiang Y, Cheng S, Xi Y, Sun X, Xu Y, Yang Z. Modulate synthesis of CeMn solid solution using various alcohols for toluene catalytic oxidation: synergistic effect of Ce-Mn and reaction mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135051. [PMID: 38954854 DOI: 10.1016/j.jhazmat.2024.135051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
A redox co-precipitation method was employed to synthesize CeMn homogeneous solid solutions, utilizing various alcohols as activating agents. Ethanol effectively orchestrated the precipitation of CeO2 and MnOx, promoting their co-growth. As a result, the CeMn-EA achieved 90 % toluene conversion at 218 ℃ (T90 =218 ℃) with a weight hourly space velocity (WHSV) of 48000 ml/(g·h). It also demonstrated high adaptability to increased WHSV, suggesting its potential for industrial-scale applications. The uniform dispersion of Ce and Mn accelerated the coupling between Ce3+/Ce4+ and Mn4+/Mn3+, engineering numerous oxygen vacancies, which enhanced the activation of gas-phase oxygen and the mobility of lattice oxygen. In situ DRIFTS confirmed that toluene oxidation accommodated both Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms, with benzoate identified as a pivotal intermediate. Enhanced oxygen mobility facilitated the cleavage of the benzene ring, which was the rate-determining step. Additionally, the introduction of H2O significantly enhanced the dissociation and adsorption of toluene and facilitated the activation of gas-phase oxygen. At higher temperatures, H2O could further activate lattice oxygen engaging in toluene oxidation. ENVIRONMENTAL IMPLICATION: Volatile organic compounds (VOCs) have emerged as major air pollutants due to the changes in air pollution patterns. They can act as precursors to near-surface ozone and haze. Toluene, a typical VOC, is primarily released from anthropogenic sources and poses significant risks to human health and the environment. Ce-based catalysts have been demonstrated efficiency in toluene oxidation due to their excellent oxygen storage and release properties. This study synthesized CeMn homogeneous solid solutions utilizing various alcohols as activating agents, which possessed abundant oxygen vacancies and optimum oxygen activation capacity to oxidize toluene in time.
Collapse
Affiliation(s)
- Ye Jiang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Yinsheng Jiang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Siyuan Cheng
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Yanyan Xi
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China
| | - Xin Sun
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Yichao Xu
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Zhengda Yang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and clean Utilization of Fossil Energy, Qingdao 266580, China.
| |
Collapse
|
3
|
Wang D, Jiang L, Tian M, Liu J, Zhan Y, Li X, Wang Z, He C. Efficacious destruction of typical aromatic hydrocarbons over CoMn/Ni foam monolithic catalysts with boosted activity and water resistance. J Colloid Interface Sci 2024; 668:98-109. [PMID: 38670000 DOI: 10.1016/j.jcis.2024.04.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.
Collapse
Affiliation(s)
- Dengtai Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Luxiang Jiang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Mingjiao Tian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Jing Liu
- Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, PR China
| | - Yi Zhan
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Xiaoxiao Li
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Zuwu Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China.
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
4
|
Peng R, Wen S, Zhang H, Zhang Y, Sun Y, Liang Z, Ye D. Catalytic Oxidation of Toluene over Pt/CeO 2 Catalysts: A Double-Edged Sword Effect of Strong Metal-Support Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13984-13994. [PMID: 38913777 DOI: 10.1021/acs.langmuir.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Strong metal-support interaction (SMSI), which has drawn widespread attention in heterogeneous catalysis, is thought to significantly affect the catalytic performance for volatile organic chemical (VOC) abatement. In the present study, strong interactions between platinum and ceria are constructed by modulating the oxygen vacancy concentration of CeO2 through a NaBH4 reduction method. For a catalyst with higher content of oxygen vacancy, more electrons would transfer from ceria to Pt, which is attributed to the stronger effect of SMSI. The obtained electron-richer Pt sites exhibit higher ability for toluene activation, contributing to better performance for toluene oxidation. On the other hand, the stronger metal-support interaction would facilitate CeOx species migrating to the Pt nanoparticle surface and forming an encapsulated structure. Smaller Pt dispersion leads to fewer sites for toluene adsorption and activation, which is to the disadvantage of the reaction. Therefore, taking the negative and positive effects together, the Pt/CeO2-0.5 catalyst has the highest catalytic performance for toluene abatement. Our study provides new insights into strong metal-support interaction on toluene oxidation and contributes to designing noble metal catalysts for VOC abatement.
Collapse
Affiliation(s)
- Ruosi Peng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuxian Wen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haozhi Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - You Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zheng Liang
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Li Q, Zhou W, Deng C, Lu C, Huang P, Xia D, Tan L, Zhou C, Zhang YW, Dong L. Hydroxyl-Decorated Pt as a Robust Water-Resistant Catalyst for Catalytic Benzene Oxidation. Inorg Chem 2023; 62:13544-13553. [PMID: 37561968 DOI: 10.1021/acs.inorgchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Huang
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Dong Xia
- Manchester Fuel Cell Innovation Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester M15 6BH, U.K
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Filip M, Anghel EM, Rednic V, Papa F, Somacescu S, Munteanu C, Aldea N, Zhang J, Parvulescu V. Variation in Metal-Support Interaction with TiO 2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101647. [PMID: 37242063 DOI: 10.3390/nano13101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The control of catalytic performance using synthesis conditions is one of the main goals of catalytic research. Two series of Pt-Ti/SBA-15 catalysts with different TiO2 percentages (n = 1, 5, 10, 30 wt.%) were obtained from tetrabutylorthotitanate (TBOT) and peroxotitanate (PT), as titania precursors and Pt impregnation. The obtained catalysts were characterized using X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), N2 sorption, Raman, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), hydrogen temperature-programmed reduction (H2-TPR) and H2-chemisorption measurements. Raman spectroscopy showed framework titanium species in low TiO2 loading samples. The anatase phase was evidenced for samples with higher titania loading, obtained from TBOT, and a mixture of rutile and anatase for those synthesized by PT. The rutile phase prevails in rich TiO2 catalysts obtained from PT. Variable concentrations of Pt0 as a result of the stronger interaction of PtO with anatase and the weaker interaction with rutile were depicted using XPS. TiO2 loading and precursors influenced the concentration of Pt species, while the effect on Pt nanoparticles' size and uniform distribution on support was insignificant. The Pt/PtO ratio and their concentration on the surface were the result of strong metal-support interaction, and this influenced catalytic performance in the complete oxidation of methane at a low temperature. The highest conversion was obtained for sample prepared from PT with 30% TiO2.
Collapse
Affiliation(s)
- Mihaela Filip
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Elena Maria Anghel
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Vasile Rednic
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Florica Papa
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Simona Somacescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Cornel Munteanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Nicolae Aldea
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Jing Zhang
- Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory,19B Yuquan Road, Beijing 100049, China
| | - Viorica Parvulescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
7
|
Li Q, Zhao H, Yang J, Zhao J, Yan L, Song H, Chou L. Catalytic behavior of Mo–Bi–Fe–Co–K–M–O (M=Ce, Gd, CeGd) catalysts for selective oxidation of isobutene. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|