1
|
Qin X, Teng W, Zhang X, Yang Y, Zhu Y, Liu Z, Li W, Dong H, Qiang Z, Zeng J, Lian J. Ethanol-diluted turbidimetry method for rapid and accurate quantification of low-density microplastics in synthetic samples. Anal Chim Acta 2023; 1278:341712. [PMID: 37709455 DOI: 10.1016/j.aca.2023.341712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
Retention and transport behaviours of microplastics (MPs) and their associated pollutants in porous media are of great concern. The homogeneity of the studied MPs in artificially controlled lab-scale studies makes rapid and accurate MP quantification feasible. In this study, an economical ethanol-diluted turbidimetry method for polypropylene (PP) and polyethylene (PE) MPs was developed. With ethanol dilution, the MP dispersion system exhibited an excellent suspension performance. Strong linear relationships were observed between MP concentrations and turbidities in both low (<1.3 mg L-1) and high (<170 mg L-1) MP concentration ranges. Solution density and MP agglomeration governed the MP suspension performance. For low surface tension and high molecular mass, the addition of ethanol decreased the contact angles of PP-MPs with solutions from 81.73 to 15.5°, and consequently improved the MP suspension performance. The suspension system was optimised to an ethanol/water (v/v) ratio of 3:2 and 4:1 for PP- and PE-MPs, when the slopes of standard curves were determined to be 1.252 and 0.471 with the recovery of 100.54 ± 3.09% and 103.19 ± 1.66%, and the limit of detection and quantification values of 0.025 and 0.082 mg L-1, and 0.060 and 0.201 mg L-1, respectively. Solution pH, salinity, and dissolved organic matter in the selected range induced acceptable fluctuations in the MP recovery and matrix effect values. The Derjaguin-Landau-Verwey-Overbeek (DLVO) energy barriers were calculated to be > 20 kT, indicating excellent tolerance to the solution matrix. Additionally, applications in real water samples were validated to demonstrate the potential of the developed method.
Collapse
Affiliation(s)
- Xinxin Qin
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Wenxi Teng
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Xiang Zhang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Yalin Yang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Yichun Zhu
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China
| | - Zuwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Jinfeng Zeng
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Hydrology and Water Resources Monitoring Center for Ganjiang Upstream Watershed, 8 Zhang-jia-wei Road, Ganzhou, 341000, China
| | - Junfeng Lian
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China; Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, 1958 Ke-jia Road, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Song Y, Yang J, Zhang X, Zhang Z, Hu X, Cheng G, Liu Y, Lv G, Ding J. Temperature-responsive peristome-structured smart surface for the unidirectional controllable motion of large droplets. MICROSYSTEMS & NANOENGINEERING 2023; 9:119. [PMID: 37780811 PMCID: PMC10539527 DOI: 10.1038/s41378-023-00573-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 10/03/2023]
Abstract
The manipulation of fast, unidirectional motion for large droplets shows important applications in the fields of fog collection and biochemical reactions. However, driving large droplets (>5 μL) to move directionally and quickly remains challenging due to the nonnegligible volume force. Herein, we fabricated a scalable, bionic peristome substrate with a microcavity width of 180 μm using a 3D printing method, which could unidirectionally drive a large water droplet (~8 μL) at a speed reaching 12.5 mm/s by temperature-responsive wettability. The substrate surface was grafted with PNIPAAm, which could reversibly change its wettability in response to temperature, thereby enabling a temperature-responsive smart surface that could regulate droplet movement in real-time by changing the temperature. A series of temperature-responsive smart patterns were designed to induce water transport along specific paths to further realize controllable droplet motion with the antibacterial treatment of predesignated areas. The ability to achieve temperature-responsive unidirectional motion and dynamic control of droplet movement could allow programmable fluidic biosensors and precision medical devices. A temperature-responsive smart surface was produced to control the unidirectional motion of large droplets between spreading and pinning movement by changing the surface wettability.
Collapse
Affiliation(s)
- Yunyun Song
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Jialei Yang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Xu Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Zhongqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Xinghao Hu
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 P. R. China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 P. R. China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 P. R. China
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127 Jiangsu P. R. China
| |
Collapse
|
3
|
Choi J, Kim H, Lee H, Yi S, Hyun Lee J, Woong Kim J. Hydrophobically modified silica nanolaces-armored water-in-oil pickering emulsions with enhanced interfacial attachment energy. J Colloid Interface Sci 2023; 641:376-385. [PMID: 36940594 DOI: 10.1016/j.jcis.2023.03.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
HYPOTHESIS Anisotropic particles with a high aspect ratio led to favorable interfacial adhesion, thus enabling Pickering emulsion stabilization. Herein, we hypothesized that pearl necklace-shaped colloid particles would play a key role in stabilizing water-in-silicone oil (W/S) emulsions by taking advantage of their enhanced interfacial attachment energy. EXPERIMENTS We fabricated hydrophobically modified silica nanolaces (SiNLs) by depositing silica onto bacterial cellulose nanofibril templates and subsequently grafting alkyl chains with tuned amounts and chain lengths onto the nanograins comprising the SiNLs. FINDINGS The SiNLs, of which nanograin has the same dimension and surface chemistry as the silica nanospheres (SiNSs), showed more favorable wettability than SiNSs at the W/S interface, which was supported by the approximately 50 times higher attachment energy theoretically calculated using the hit-and-miss Monte Carlo method. The SiNLs with longer alkyl chains from C6 to C18 more effectively assembled at the W/S interface to produce a fibrillary interfacial membrane with a 10 times higher interfacial modulus, preventing water droplets from coalescing and improving the sedimentation stability and bulk viscoelasticity. These results demonstrate that the SiNLs acted as a promising colloidal surfactant for W/S Pickering emulsion stabilization, thereby allowing the exploration of diverse pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Jihyun Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunsuk Lee
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - SeungHwan Yi
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea
| | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Fei X, Yang T, Liu S, Zhang B, Zhao H, Liu D, Wu X, Xu D. Effect of silane coupling
agent‐TiO
2
on the sustained release performance of quaternary ammonium salt of chitosan shell fragrance microcapsules. J Appl Polym Sci 2023. [DOI: 10.1002/app.53673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuening Fei
- School of Science Tianjin Chengjian University Tianjin China
| | - Tingyu Yang
- School of Science Tianjin Chengjian University Tianjin China
| | - Sijia Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Baolian Zhang
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
| | - Hongbin Zhao
- School of Science Tianjin Chengjian University Tianjin China
| | - Dan Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Xinyi Wu
- School of Science Tianjin Chengjian University Tianjin China
| | - Danyang Xu
- School of Science Tianjin Chengjian University Tianjin China
| |
Collapse
|
5
|
Liu L, Wei J, Ho KM, Chiu KY, Ngai T. Capsules templated from water-in-oil Pickering emulsions for enzyme encapsulation. J Colloid Interface Sci 2023; 629:559-568. [PMID: 36179576 DOI: 10.1016/j.jcis.2022.09.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Encapsulation of sensitive water-soluble bioactive materials such as fragrances, polyphenols and enzymes poses an immense challenge with capsules templated from water-in-oil (w/o) emulsions. Generation of radicals, heating, and extreme pH that are necessary for shell formation through interfacial reactions may have undesired influences on the active ingredients and thus lower their activity. EXPERIMENTS To overcome these limitations, we present a method to encapsulate sensitive ingredients, whereby capsules are templated from a w/o Pickering emulsion stabilized by binary particles of different hydrophilicity levels; the particles assembled at the water/oil interface are then crosslinked by polydiisocyanate (PHDI) at room temperature and neutral pH. Zein and casein nanoparticles were used as hydrophilic stabilizers and lipase was chosen as a model sensitive biomolecule that was encapsulated in the water core. FINDINGS Our results indicated that the enzymes encapsulated in colloid capsules had higher activity than those encapsulated in traditional w/o Pickering emulsion without shell crosslinking. The capsule structure effectively protected enzymes from the outer environment. This method is well suited for the encapsulation and protection of sensitive ingredients and shows great application in food, drug, and cosmetic industries.
Collapse
Affiliation(s)
- Liangdong Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jingjing Wei
- Department of Fine Chemical Engineering, Shenzhen Polytechnic, Nanshan District, Shenzhen, Guangdong, China.
| | - Kin Man Ho
- Xianhong Science (Hong Kong) Co. Ltd, Room 1604, Nanyang Plaza, No. 57 Hung To Road, Kwun Tong, Kowloon, Hong Kong, China
| | - Kwan Yeung Chiu
- Xianhong Science (Hong Kong) Co. Ltd, Room 1604, Nanyang Plaza, No. 57 Hung To Road, Kwun Tong, Kowloon, Hong Kong, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|