1
|
Wang Y, Williams GR, Zheng Y, Guo H, Chen S, Ren R, Wang T, Xia J, Zhu LM. Polydopamine-cloaked Fe-based metal organic frameworks enable synergistic multidimensional treatment of osteosarcoma. J Colloid Interface Sci 2023; 651:76-92. [PMID: 37540932 DOI: 10.1016/j.jcis.2023.07.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
One of the major challenges in effective cancer therapy arises because of the hypoxic microenvironment in the tumor. This compromises the efficacy of both chemo- and radiotherapy, and thus hinders patient outcomes. To solve this problem, we constructed polydopamine (PDA)-cloaked Fe-based metal organic frameworks (MOFs) loaded with d-arginine (d-Arg), glucose oxidase (GOX), and the chemotherapeutic drug tirapazamine (TPZ). These offer simultaneous multifaceted therapy combining chemodynamic therapy (CDT)/radiotherapy (RT)/starvation therapy (ST)/gas therapy (GT) and chemotherapy. The particles further can act as contrast agents in magnetic resonance imaging. GOX catalyses the conversion of endogenous glucose and O2 to hydrogen peroxide and gluconic acid, blocking the cells' energy supply and providing ST. With the resultant acidification of the local environment, the breakdown of the MOF releases TPZ (for chemotherapy) and Fe3+, which reacts with H2O2 to produce reactive oxygen species and thus stimulates the conversion of d-Arg to NO for GT and RT sensitization. The PDA coating not only seals the pores and chelates Fe3+ to enhance the T1-weighted magnetic resonance imaging (MRI) properties, but also is used to graft folate bovine serum albumin (FA-BSA) and thereby target the tumor site. The combined administration of low doses of X-ray irradiation and nanoparticles reduces the side effects on healthy tissue and can prevent lung metastases in mice. This work highlights the synergistic treatment of osteosarcoma via ST/GT/CDT/RT/MRI/ chemotherapy using a PDA-cloaked MOF system.
Collapse
Affiliation(s)
- Ying Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Shiyan Chen
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rong Ren
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Qi G, Shi G, Wang S, Hu H, Zhang Z, Yin Q, Li Z, Hao L. A Novel pH-Responsive Iron Oxide Core-Shell Magnetic Mesoporous Silica Nanoparticle (M-MSN) System Encapsulating Doxorubicin (DOX) and Glucose Oxidase (Gox) for Pancreatic Cancer Treatment. Int J Nanomedicine 2023; 18:7133-7147. [PMID: 38054080 PMCID: PMC10695029 DOI: 10.2147/ijn.s436253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction This study developed a pancreatic cancer targeted drug delivery system that responds to changes in acidity. The system was based on iron oxide core-shell magnetic mesoporous silica nanoparticles (M-MSNs) to treat pancreatic cancer through combined chemotherapy and starvation therapy. Methods Glucose oxidase (Gox) was coupled to the cancer cell surface to reduce glucose availability for cancer cells, exacerbating the heterogeneity of the tumor microenvironment. Reduced pH accelerated the depolymerization of pH-sensitive polydopamine (PDA), thereby controlling the spatial distribution of Gox and release of doxorubicin (DOX) within tumor cells. Results Characterization results showed the successful synthesis of DG@M-MSN-PDA-PEG-FA (DG@NPs) with a diameter of 66.02 ± 3.6 nm. In vitro data indicated DG@NPs were highly effective and stable with good cellular uptake shown by confocal laser scanning microscopy (CLSM). DG@NPs exhibited high cytotoxicity and induced apoptosis. Additionally, in vivo experiments confirmed DG@NPs effectively inhibited tumor growth in nude mice with good biosafety. The combination of starvation therapy and chemotherapy facilitated drug release, suggesting DG@NPs as a novel drug delivery system for pancreatic cancer treatment. Conclusion This study successfully constructed a doxorubicin release system responsive to acidity changes for targeted delivery in pancreatic cancer, providing a new strategy for combination therapy.
Collapse
Affiliation(s)
- Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Shengchao Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Haifeng Hu
- Medical Imaging Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, People’s Republic of China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Qiangqiang Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Zhongtao Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, People’s Republic of China
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161041, People’s Republic of China
| |
Collapse
|
3
|
Yang Q, Guo Y, Zhou Y, Song J, Song Y, Li H, Gao H, Huang W. Multifunctional Nanotheranostics for Dual-Modal Imaging-Guided Precision Therapy of Nasopharyngeal Carcinoma. Mol Pharm 2023; 20:4743-4757. [PMID: 37579048 DOI: 10.1021/acs.molpharmaceut.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Currently, the low survival rate and poor prognosis of patients with nasopharyngeal carcinoma are ascribed to the lack of early and accurate diagnosis and resistance to radiotherapy. In parallel, the integration of imaging-guided diagnosis and precise treatment has gained much attention in the field of theranostic nanotechnology. However, constructing dual-modal imaging-guided nanotheranostics with desired imaging performance as well as great biocompatibility remains challenging. Therefore, we developed a simple but multifunctional nanotheranostic GdCPP for the early and accurate diagnosis and efficient treatment of nasopharyngeal carcinoma (NPC), which combined fluorescence imaging and magnetic resonance imaging (MRI) onto a single nanoplatform for imaging-guided subsequent photodynamic therapy (PDT). GdCPP had an appropriate particle size (81.93 ± 0.69 nm) and was highly stable, resulting in sufficient tumor accumulation, which along with massive reactive oxygen species (ROS) generation upon irradiation further significantly killed tumor cells. Moreover, GdCPP owned much stronger r1 relaxivity (9.396 mM-1 s-1) compared to clinically used Gd-DTPA (5.034 mM-1 s-1) and exhibited better T1WI MRI performance. Under dual-modal imaging-guided PDT, GdCPP achieved efficient therapeutic outcomes without causing any noticeable tissue damage. The results of in vitro and in vivo studies indicated that GdCPP may be a suitable candidate for dual-modal imaging-guided precision tumor therapy.
Collapse
Affiliation(s)
- Qianyu Yang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiali Song
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yujun Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
4
|
Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers (Basel) 2022; 15:cancers15010162. [PMID: 36612158 PMCID: PMC9817889 DOI: 10.3390/cancers15010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Along with the extensive improvement in tumor biology research and different therapeutic developments, cancer remains a dominant and deadly disease. Tumor heterogeneity, systemic toxicities, and drug resistance are major hurdles in cancer therapy. Chemotherapy, radiotherapy, phototherapy, and surgical therapy are some prominent areas of cancer treatment. During chemotherapy for cancer, chemotherapeutic agents are distributed all over the body and also damage normal cells. With advancements in nanotechnology, nanoparticles utilized in all major areas of cancer therapy offer the probability to advance drug solubility, and stability, extend drug half-lives in plasma, reduce off-target effects, and quintessence drugs at a target site. The present review compiles the use of different types of nanoparticles in frequently and recently applied therapeutics of cancer therapy. A recent area of cancer treatment includes cancer stem cell therapy, DNA/RNA-based immunomodulation therapy, alteration of the microenvironment, and cell membrane-mediated biomimetic approach. Biocompatibility and bioaccumulation of nanoparticles is the major impediment in nano-based therapy. More research is required to develop the next generation of nanotherapeutics with the incorporation of new molecular entities, such as kinase inhibitors, siRNA, mRNA, and gene editing. We assume that nanotherapeutics will dramatically improve patient survival, move the model of cancer treatment, and develop certainty in the foreseeable future.
Collapse
Affiliation(s)
- Anupama Ojha
- Department of Allied Health Science, Mahayogi Gorakhnath University, Gorakhpur 273007, India
| | - Sonali Jaiswal
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Priyanka Bharti
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Sarad Kumar Mishra
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur 273009, India
- Correspondence:
| |
Collapse
|
5
|
Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Wen Y, Yuan Y, Zhang B, Lin J, Zhao Z, Li J, Cheng Y. Molybdenum blue mediated photothermal immunoassay for CEA detection based on Ag 4P 2O 7@Ag nanocomposites. Talanta 2022; 249:123665. [PMID: 35691125 DOI: 10.1016/j.talanta.2022.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
A photothermal immunoassay was built for tumor marker detection based on Ag4P2O7@Ag nanocomposites. Ag4P2O7@Ag nanomaterials were synthesized by precipitation-photoreduction reaction, and characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectra (XPS) and X-ray powder diffraction (XRD). Come about PO43- derived from Ag4P2O7@Ag under acidic conditions react with ammonium molybdate in the action of reductant generating molybdenum blue. The photothermal change is due to molybdenum blue solution depending on the concentration of carcinoembryonic antigen (CEA) in immunoassay. Under optimal conditions, there is a linear relation between ΔT and CEA concentration in the range of 1 pg mL-1-40 ng mL-1 with the detection limit of 0.33 pg mL-1. Meanwhile, the developed photothermal immunoassay displays preferable selectivity, repeatability, and stability.
Collapse
Affiliation(s)
- Yanfei Wen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuan Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihuan Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yan Cheng
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
7
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
8
|
Fu L, Huang Y, Hou J, Sun M, Wang L, Wang X, Chen L. A Raman/fluorescence dual-modal imaging guided synergistic photothermal and photodynamic therapy nanoplatform for precision cancer theranostics. J Mater Chem B 2022; 10:8432-8442. [DOI: 10.1039/d2tb01696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoplatform that integrates hypoxia-responsive fluorescent probe function as well as imaging and therapeutic functions is developed.
Collapse
Affiliation(s)
- Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Junjun Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingzhao Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxiao Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|