1
|
Reed J, Grava M, Shen C, Brezesinski G, Schneck E. Grazing-incidence X-ray diffraction elucidates structural correlations in fluid monolayers of lipids and surfactants. NANOSCALE 2024. [PMID: 39688269 DOI: 10.1039/d4nr04198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Biological membranes predominantly consist of fluid lipid phases featuring lateral mobility and a considerable disorder of their hydrocarbon chains. Langmuir monolayers of lipids at the air/water interface are versatile model systems for fundamental physicochemical and biophysical membrane investigations. Grazing-incidence X-ray diffraction (GIXD) is a powerful tool for the structural characterization of such monolayers but has so far been used almost exclusively for lipid phases of crystalline ordering giving rise to sharp diffraction peaks. Here, we use GIXD for the characterization of fluid monolayers of phospholipids and of water-soluble surfactants. We find that these layers feature spatiotemporally localized, structurally correlated hydrocarbon chain regions that involve only a few molecules and have only a small extension vertically. The abundance of these regions increases with increasing lateral packing density due to compression until the transition into an ordered phase occurs.
Collapse
Affiliation(s)
- Joshua Reed
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Miriam Grava
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| |
Collapse
|
2
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
3
|
Bange L, Mukhina T, Fragneto G, Rondelli V, Schneck E. Influence of adhesion-promoting glycolipids on the structure and stability of solid-supported lipid double-bilayers. SOFT MATTER 2024; 20:2113-2125. [PMID: 38349522 DOI: 10.1039/d3sm01615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Glycolipids have a considerable influence on the interaction between adjacent biomembranes and can promote membrane adhesion trough favorable sugar-sugar "bonds" even at low glycolipid fractions. Here, in order to obtain structural insights into this phenomenon, we utilize neutron reflectometry in combination with a floating lipid bilayer architecture that brings two glycolipid-loaded lipid bilayers to close proximity. We find that selected glycolipids with di-, or oligosaccharide headgroups affect the inter-bilayer water layer thickness and appear to contribute to the stability of the double-bilayer architecture by promoting adhesion of adjacent bilayers even against induced electrostatic repulsion. However, we do not observe any redistribution of glycolipids that would maximize the density of sugar-sugar contacts. Our results point towards possible strategies for the investigation of interactions between cell surfaces involving specific protein-protein, lipid-lipid, or protein-lipid binding.
Collapse
Affiliation(s)
- Lukas Bange
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Giovanna Fragneto
- Institut Laue-Langevin, Grenoble, France
- The European Spallation Source, ERIC, Lund, Sweden
| | - Valeria Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
4
|
Stefaniu C, Wölk C, Latza VM, Chumakov A, Brezesinski G, Schneck E. Cross-linking reactions in Langmuir monolayers of specially designed aminolipids - a toolbox for the customized production of amphiphilic nanosheets. NANOSCALE ADVANCES 2023; 5:4589-4597. [PMID: 37638167 PMCID: PMC10448339 DOI: 10.1039/d3na00244f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Synthetic amino lipids, already known as highly efficient gene therapy tool, are used in a novel way to create cross-linked stable one-molecule-thin films envisioned for future (bio)-materials applications. The films are prepared as Langmuir monolayers at the air/water interface and cross-linked 'in situ' via dynamic imine chemistry. The cross-linking process and the film characteristics are monitored by various surface-sensitive techniques such as grazing incidence X-ray diffraction, X-ray reflectivity, and infrared reflection-absorption spectroscopy. After transfer onto carbon grids, the cross-linked films are investigated by transmission and scanning electron microscopy. The obtained micrographs display mechanically self-supported nanosheets with area dimensions over several micrometers and, thus, an undeniable visual proof of successful cross-linking. The cross-linking process at the air/water interface allows to obtain Janus-faced sheets with a hydrophobic side characterized by aliphatic alkyl chains and a hydrophilic side characterized by nucleophilic groups like amines, hydroxyl groups and imine.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Christian Wölk
- Pharmaceutical Technology, Faculty of Medicine, University of Leipzig Eilenburger Str. 15a 04317 Leipzig Germany
| | - Victoria M Latza
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Andrei Chumakov
- European Synchrotron Radiation Facility 71, avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Gerald Brezesinski
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Physics, TU Darmstadt Hochschulstr. 8 64289 Darmstadt Germany
| | - Emanuel Schneck
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Physics, TU Darmstadt Hochschulstr. 8 64289 Darmstadt Germany
| |
Collapse
|
5
|
Yi X, Gao S, Gao X, Zhang X, Xia G, Liu Z, Shi H, Shen X. Glycolipids improve the stability of liposomes: The perspective of bilayer membrane structure. Food Chem 2023; 412:135517. [PMID: 36708667 DOI: 10.1016/j.foodchem.2023.135517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The storage and thermal stability of liposomes, which are amphiphilic carriers, cause very large challenges. However, glycolipid modification may be a potential method to improve the stability of liposomes. In this study, the mechanism by which tilapia head glycolipids improve the stability of liposomes was studied. The head groups of glycolipids and liposomes have a strong interaction (Ka = 633.650 M-1), mainly due to hydrogen bonds, which promote the formation of microstructure domains between glycolipids and liposomes. In addition, glycolipids caused the bilayer structure of liposomes to rearrange, resulting in an increase in the phase transition temperature, tight arrangement of membrane molecules, and increase in membrane thickness (from 2.4 nm to 3.5 nm). Novelty, the formation of microstructure domains helped prevent the liposomes membrane structure from being disrupted during storage and heat. Therefore, glycolipid modification improved the stability of liposomes. This study can provide new insights into the development of high-stability liposomes.
Collapse
Affiliation(s)
- Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shuxin Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Pusterla J, Scoppola E, Appel C, Mukhina T, Shen C, Brezesinski G, Schneck E. Characterization of lipid bilayers adsorbed to functionalized air/water interfaces. NANOSCALE 2022; 14:15048-15059. [PMID: 36200471 DOI: 10.1039/d2nr03334h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid bilayers immobilized in planar geometries, such as solid-supported or "floating" bilayers, have enabled detailed studies of biological membranes with numerous experimental techniques, notably X-ray and neutron reflectometry. However, the presence of a solid support also has disadvantages as it complicates the use of spectroscopic techniques as well as surface rheological measurements that would require surface deformations. Here, in order to overcome these limitations, we investigate lipid bilayers adsorbed to inherently soft and experimentally well accessible air/water interfaces that are functionalized with Langmuir monolayers of amphiphiles. The bilayers are characterized with ellipsometry, X-ray scattering, and X-ray fluorescence. Grazing-incidence X-ray diffraction reveals that lipid bilayers in a chain-ordered state can have significantly different structural features than regular Langmuir monolayers of the same composition. Our results suggest that bilayers at air/water interfaces may be well suited for fundamental studies in the field of membrane biophysics.
Collapse
Affiliation(s)
- Julio Pusterla
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian Appel
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| |
Collapse
|
7
|
Mukhina T, Richter L, Vollhardt D, Brezesinski G, Schneck E. The Complete Phase Diagram of Monolayers of Enantiomeric N-Stearoyl-threonine Mixtures with Preferred Heterochiral Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12521-12529. [PMID: 36209408 PMCID: PMC9583611 DOI: 10.1021/acs.langmuir.2c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Langmuir monolayers of chiral amphiphiles are well-controlled model systems for the investigation of phenomena related to stereochemistry. Here, we have investigated mixed monolayers of one pair of enantiomers (l and d) of the amino-acid-based amphiphile N-stearoyl-threonine. The monolayer characteristics were studied by pressure-area isotherm measurements and grazing incidence X-ray diffraction (GIXD) over a wide range of mixing ratios defined by the d-enantiomer mole fraction xD. While the isotherms provide insights into thermodynamical aspects, such as transition pressure, compression/decompression hysteresis, and preferential homo- and heterochiral interactions, GIXD reveals the molecular structural arrangements on the Ångström scale. Dominant heterochiral interactions in the racemic mixture lead to compound formation and the appearance of a nonchiral rectangular lattice, although the pure enantiomers form a chiral oblique lattice. Miscibility was found to be limited to mixtures with 0.27 ≲ xD ≲ 0.73, as well as to both outer edges (xD ≲ 0.08 and xD ≳ 0.92). Beyond this range, coexistence of oblique and rectangular lattices occurs, as is clearly seen in the GIXD patterns. Based on the results, a complete phase diagram with two eutectic points at xD ≈ 0.25 and xD ≈ 0.75 is proposed. Moreover, N-stearoyl-threonine was found to have a strong tendency to form a hydrogen-bonding network between the headgroups, which promotes superlattice formation.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| | - Lars Richter
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| | - Dieter Vollhardt
- Max-Planck
Institute for Polymer Research, Ackermannweg 10, D-55128Mainz, Germany
| | - Gerald Brezesinski
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| | - Emanuel Schneck
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| |
Collapse
|
8
|
Matsuzaki T, Terutsuki D, Sato S, Ikarashi K, Sato K, Mitsuno H, Okumura R, Yoshimura Y, Usami S, Mori Y, Fujii M, Takemi S, Nakabayashi S, Yoshikawa HY, Kanzaki R. Low Surface Potential with Glycoconjugates Determines Insect Cell Adhesion at Room Temperature. J Phys Chem Lett 2022; 13:9494-9500. [PMID: 36201238 PMCID: PMC9575668 DOI: 10.1021/acs.jpclett.2c01673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated. We quantitatively monitored the adhesion dynamics of Sf21 using interference reflection microscopy (IRM). Specific adhesion signatures with ring-like patches along the cellular periphery were detected. A combination of zeta potential measurements and lectin staining identified specific glycoconjugates with low electrostatic potentials. The ring-like structures were disrupted after cholesterol depletion, suggesting a raft domain along the cell periphery. Our results indicate dynamic and asymmetric cell adhesion is due to low electrostatic repulsion with fluidic sugar rafts. We envision the logical design of cell-sensor interfaces with an electrical model that accounts for actual adhesion interfaces.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Center
for Future Innovation, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Division
of Strategic Research and Development, Saitama
University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Daigo Terutsuki
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
- Department
of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-Ku, Sendai, 980-8579 Japan
| | - Shoma Sato
- Department
of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Kohei Ikarashi
- Department
of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Kohei Sato
- Graduate
School of Science and Technology, Shizuoka
University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Course
of Applied Chemistry and Biochemical Engineering, Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Department
of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Research
Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Hidefumi Mitsuno
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
| | - Ryu Okumura
- Department
of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- WPI
Immunology Frontier Research Center, Osaka
University, Osaka 565-0871, Japan
- Integrated
Frontier Research for Medical Science Division, Institute for Open
and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Yudai Yoshimura
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyoshi Usami
- Division
of Electrical, Electronic and Info communications Engineering, Graduate
School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Mori
- Division
of Electrical, Electronic and Info communications Engineering, Graduate
School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mai Fujii
- Department
of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area
of Regulatory Biology, Division of Life Science, Graduate School of
Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Seiichiro Nakabayashi
- Division
of Strategic Research and Development, Saitama
University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
- Department
of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Hiroshi Y. Yoshikawa
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryohei Kanzaki
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
| |
Collapse
|
9
|
Mukhina T, Pabst G, Ruysschaert JM, Brezesinski G, Schneck E. pH-Dependent physicochemical properties of ornithine lipid in mono- and bilayers. Phys Chem Chem Phys 2022; 24:22778-22791. [PMID: 36111816 DOI: 10.1039/d2cp01045c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers. OL is found to have a greater tendency than chain-analogous PEL to form ordered structures and, in contrast to PEL, even a molecular superlattice based on a hydrogen bonding network between the headgroups. This superlattice is virtually electrically uncharged and persists over a wide pH range. Our results indicate that OL and PEL behave very differently in ordered single-component membranes but may behave more similarly in fluid multicomponent membranes.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| | - Georg Pabst
- Insitute of Molecular Biosciences, University of Graz, Universitätsplatz 3, 8010, Graz, Austria
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| |
Collapse
|
10
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
11
|
Mukhina T, Brezesinski G, Schneck E. Phase Behavior and Miscibility in Two-Component Glycolipid Monolayers. J Phys Chem B 2022; 126:6464-6471. [PMID: 35976765 DOI: 10.1021/acs.jpcb.2c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are known to be involved in the formation of ordered functional domains in biological membranes. Since the structural characterization of such domains is difficult, most studies have so far dealt with lipid mixtures containing only one glycolipid component at a time, although biological membranes usually contain several glycolipid species, which can result in more complex structures and phase behavior. Here, we combine classical isotherm measurements with surface-sensitive grazing-incidence X-ray diffraction to investigate the phase behavior and miscibility in Langmuir monolayers of binary glycolipid mixtures. We find that the phase behavior has a subtle dependence on the saccharide headgroup chemistry. For compatible chemistries, molecular superlattice structures formed by one of the glycolipid species are conserved and can host foreign glycolipids up to a defined stoichiometry. In contrast, for sterically incompatible saccharide chemistries, the superlattice is lost even if both species are able to form such structures in their pure forms. Our results suggest that related phenomena may play important roles also in biological contexts.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|