1
|
Zhou QY, Song Y, Yan XX, Yu Y, Liu LL, Qiu HD, Li P, Su XD. A convenient colorimetric assay for Cr(VI) detection based on homogeneous Cu(II)-GMP system with oxidoreductase-like activity. Talanta 2025; 281:126884. [PMID: 39288588 DOI: 10.1016/j.talanta.2024.126884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Hexavalent chromium (Cr(VI)) is an environmental pollutant and recognized as a human carcinogen. Therefore, it is necessary to develop a simple and sensitive detection technique for Cr(VI). Herein, it is found that Cu2+ interacts with guanosine 5'-monophosphate (GMP) to form a homogeneous Cu(II)-GMP complex (Cu2+·GMP) that efficiently displays the oxidoreductase-like catalytic activity. Cu2+·GMP can catalyze the oxidation between Cr(VI) and substrate 3,3',5,5'- tetramethylbenzidine (TMB), resulting in color change recognized by the naked eyes. Base on this, a convenient colorimetric assay for Cr(VI) detection was developed. The detection limit (3σ/s) of this sensor for Cr(VI) was 23 nM with a linear range of 0.1-25 μM. Moreover, the proposed assay was successfully applied to detect Cr(VI) in different environmental water samples with satisfactory recoveries. Our method is simple, efficient, rapid and cost-effective for Cr(VI) detection without the need for complicated material preparation or special separation, which shows great potential in environmental monitoring.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Yi Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xu-Xia Yan
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yan Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Lu-Lu Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Hui-Dong Qiu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ping Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiao-Dong Su
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
2
|
Meng Y, Wu L, Zhao J, Shuang S, Dong C, Nie J. Facile synthesis of long-wavelength emission carbon dots for hypochlorite sensing and intracellular pH imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124767. [PMID: 39013304 DOI: 10.1016/j.saa.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hypochlorite (ClO-), a typical reactive oxygen species, plays an irreplaceable roles in various biological processes. In this work, long-wavelength emission carbon dots (LW-CDs) were fabricated through one-step hydrothermal method by using l-cysteine (cys) and neutral red (NR) as precursors for monitoring of hypochlorite and intracellular pH. Characterizations of as-prepared LW-CDs showed that they had excellent water solubility, high optical stability and sensitive response behavior. Fluorescence intensity of LW-CDs decayed in the presence of ClO- linearly from 10 to 162.5 μM (LOD = 1.021 μM) based on static quenching effect with ideal selectivity. Besides, LW-CDs revealed a pH responsive behavior in the pH range of 2.0 to 10.0, exhibited dual good linear relationships in the pH ranges of 4.2-5.8 and 5.8-7.4. The LW-CDs can also be utilized as imaging reagents in Hela living cells owing excellent biocompatibility and low cytotoxicity. These results demonstrated that the as-mentioned LW-CDs are expected to serve as excellent long wavelength emitting nanomaterials for fluorescence sensing and monitoring of cell fluctuations.
Collapse
Affiliation(s)
- Yating Meng
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Linzhu Wu
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Junxiu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 China.
| |
Collapse
|
3
|
Zhong WL, Yang JY. Fluorescent carbon quantum dots for heavy metal sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177473. [PMID: 39522783 DOI: 10.1016/j.scitotenv.2024.177473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Many heavy metals pose significant threats to the environment and human health. Traditional methods for detecting heavy metals are often limited by complex procedures, high costs, and challenges in field monitoring. Carbon quantum dots (CQDs), a novel class of fluorescent carbon nanomaterials, have garnered significant interest due to their excellent biocompatibility, low cost, and minimal toxicity. This paper reviews the primary synthesis methods, luminescence mechanisms, and fluorescence quenching mechanisms of CQDs, as well as their recent applications in detecting heavy metals. In heavy metal sensing applications, the simplest hydrothermal method is commonly employed for the one-step synthesis and surface modification of CQDs. Various green reagents and biomass materials, such as citric acid, glutathione, orange peel, and bagasse, can be used for CQDs' preparation. Quantum confinement effects and surface defects give CQDs their distinctive luminescence properties, enabling the detection of heavy metals through fluorescence quenching or enhancement. Additionally, CQDs can be applied in biological imaging and smart detection, and when combined with adsorption materials, they can offer multifunctional capabilities. This review also discusses the future development prospects of CQDs.
Collapse
Affiliation(s)
- Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Feng B, Zhao W, Zhang M, Fan X, He T, Luo Q, Yan J, Sun J. Lignin-Based Carbon Nanomaterials for Biochemical Sensing Applications. Chem Asian J 2024; 19:e202400611. [PMID: 38995858 DOI: 10.1002/asia.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D-3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.
Collapse
Affiliation(s)
- Baofang Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063015, P.R. China
| | - Min Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xu Fan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ting He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qizhen Luo
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jipeng Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
5
|
K H. A review on carbon quantum dot/semiconductor-based nanocomposites as hydrogen production photocatalysts. RSC Adv 2024; 14:23404-23422. [PMID: 39055266 PMCID: PMC11270004 DOI: 10.1039/d4ra04149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Carbon quantum dots (CQDs) are discrete, quasi-spherical carbon nanoparticles with sizes below 10 nm. The properties of CQDs can be further enhanced by doping with elements such as nitrogen, phosphorous, sulphur, and boron or co-doping with heteroatoms such as nitrogen-phosphorous, nitrogen-sulphur, and nitrogen-boron. These excellent properties of CQDs can be utilized to enhance the photocatalytic performance of semiconductors. Therefore, in this review, we summarize different types of bare CQD-scaffolded semiconductors, both doped and co-doped, used for photocatalytic hydrogen production. Moreover, the detailed photocatalytic mechanism of CQD/semiconductor-based hydrogen production is reviewed. Recent progress in the design and development of CQD-based photocatalysts, along with the challenges involved, is comprehensively reviewed.
Collapse
Affiliation(s)
- Hareesh K
- Department of Physics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
6
|
Wang R, Zhang S, Zhang J, Wang J, Bian H, Jin L, Zhang Y. State-of-the-art of lignin-derived carbon nanodots: Preparation, properties, and applications. Int J Biol Macromol 2024; 273:132897. [PMID: 38848826 DOI: 10.1016/j.ijbiomac.2024.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jing Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jiahai Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linghua Jin
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Ye Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Ma Y, Li M, Qi X, Cao Y, Zhang W, Gao G, Tang B. A Multimode Optical Sensor for Selective and Sensitive Detection of Harmful Heavy Metal Cr(VI) in Fresh Water and Sea Water. Anal Chem 2024; 96:8705-8712. [PMID: 38717967 DOI: 10.1021/acs.analchem.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water pollution originating from heavy metals has shown great impacts on the ecological environment and human health due to their extremely low biodegradability. Hexavalent chromium Cr(VI), as one harmful heavy metal with strong oxidation, high biological permeability, and high carcinogenicity, is becoming an increasingly serious threat to human health. Therefore, conveniently but accurately, monitoring the Cr(VI) level in water to maintain its normal level and ensuring the stability of the ecosystem and human health become very valuable. However, most of these heavy metal sensors reported are turn-off type single-emission sensors. In this work, a ratiometric fluorescence/colorimetry/smartphone triple-mode turn-on optical sensor for Cr(VI) was developed based on a multifunctional metal-organic framework platform. The detection limits for these three mutual verification modes were only 1.28, 4.89, and 68.4 nM, respectively. Additionally, the color changes of the detection system under sunlight can also be observed directly by the naked eye. The accuracy and practicability of this multimode sensor were further proved by the detection of Cr(VI) in actual water and seawater samples, and the recovery rate ranged from 97.308 to 104.041%.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
8
|
Hu H, Chen Z, Li T, Wang L, Xing H, Guo G, Wang G, Chen D. A sensitive lateral flow test strip sensor for visual detection of acid red 18 in food using bicentric-emission carbon dots. NANOSCALE 2024; 16:5574-5583. [PMID: 38393678 DOI: 10.1039/d3nr05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Hazardous synthetic colorants have found widespread use in food production, and excessive consumption of these pigments can pose potential risks to human health. In this study, we propose an ultrasensitive fluorescence method for the analysis of Acid Red 18 (AR18) in food products. The method is based on the nitrogen-doped carbon dots (N-CDs) derived from tris and resorcinol through a hydrothermal way. The as-synthesized N-CDs exhibit two emission centers at 425 nm and 541 nm, corresponding to the excitation wavelengths of 377 nm and 465 nm, respectively. Upon the addition of AR18, the fluorescence intensity at 541 nm significantly decreases with a simultaneous, though less pronounced, reduction in the intensity at 425 nm, which is attributed to the localization of fluorescence resonance energy transfer (L-FRET). Specifically, a novel ratiometric fluorescent probe was constructed based on the extracted data from the 3D fluorescence excitation-emission matrix. This probe demonstrates a wide linear range from 0.0539 to 30 μM and a low limit of detection (LOD) of 53.9 nM. For practical applications, a portable fluorescent sensor based on a lateral flow test strip (LFTS) was designed for real-time monitoring of AR18. Color channel values were determined using a smartphone application, resulting in a satisfactory LOD of 75.3 nM. Furthermore, the suitability of the proposed ratiometric fluorescent probe was validated through the detection of AR18 in real food samples, consistently achieving recovery rates in the range of 99.7-101.4%. This research not only expands the scope of CDs in sensing fields, but also provides an effective strategy for the development of an excellent platform for real-time AR18 detection, contributing to public food safety.
Collapse
Affiliation(s)
- Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Zewei Chen
- Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga 840-8502, Japan
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Linfan Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
9
|
Zhou P, Xu J, Hou X, Dai L, Zhang J, Xiao X, Huo K. Heteroatom-engineered multicolor lignin carbon dots enabling bimodal fluorescent off-on detection of metal-ions and glutathione. Int J Biol Macromol 2023; 253:126714. [PMID: 37673154 DOI: 10.1016/j.ijbiomac.2023.126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Carbon dots (CDs) have emerged as a promising subclass of optical nanomaterials with versatile functions in multimodal biosensing. Howbeit the rapid, reliable and reproducible fabrication of multicolor CDs from renewable lignin with unique groups (e.g., -OCH3, -OH and -COOH) and alterable moieties (e.g., β-O-4, phenylpropanoid structure) remains challenging due to difficult-to-control molecular behavior. Herein we proposed a scalable acid-reagent strategy to engineer a family of heteroatom-doped multicolor lignin carbon dots (LCDs) that are functioned as the bimodal fluorescent off-on sensing of metal-ions and glutathione (GSH). Benefiting from the modifiable photophysical structure via heteroatom-doping (N, S, W, P and B), the multicolor LCDs (blue, green and yellow) with a controllable size distribution of 2.06-2.22 nm deliver the sensing competences to fluorometric probing the distinctive metal-ion systems (Fe3+, Al3+ and Cu2+) under a broad response interval (0-500 μM) with excellent sensitivity and limit of detection (LOD, 0.45-3.90 μM). Meanwhile, we found that the addition of GSH can efficiently restore the fluorescence of LCDs by forming a stable Fe3+-GSH complex with a LOD of 0.97 μM. This work not only sheds light on evolving lignin macromolecular interactions with tunable luminescent properties, but also provides a facile approach to synthesize multicolor CDs with advanced functionalities.
Collapse
Affiliation(s)
- Pengfei Zhou
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xinyan Hou
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaming Zhang
- College of Biomass Science and Engineering, Sichuan University, Sichuan 610065, China
| | - Xiao Xiao
- College of Biomass Science and Engineering, Sichuan University, Sichuan 610065, China.
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Gan J, Chen L, Chen Z, Zhang J, Yu W, Huang C, Wu Y, Zhang K. Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304066. [PMID: 37537709 DOI: 10.1002/smll.202304066] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Carbon dots (CDs), a new type of carbon-based fluorescent nanomaterial, have attracted widespread attention because of their numerous excellent properties. Lignocellulosic biomass is the most abundant renewable natural resource and possesses broad potential to manufacture different composite and smart materials. Numerous studies have explored the potential of using the components (such as cellulose, hemicellulose, and lignin) in lignocellulosic biomass to produce CDs. There are few papers systemically aiming in the review of the state-of-the-art works related to lignocellulosic biomass-derived CDs. In this review, the significant advances in synthesis processes, formation mechanisms, structural characteristics, optical properties, and applications of lignocellulosic biomass-based CDs such as cellulose-based CDs, hemicellulose-based CDs and lignin-based CDs in latest research are reviewed. In addition, future research directions on the improvement of the synthesis technology of CDs using lignocellulosic biomass as raw materials to enhance the properties of CDs are proposed. This review will serve as a road map for scientists engaged in research and exploring more applications of CDs in different science fields to achieve the highest material performance goals of CDs.
Collapse
Affiliation(s)
- Jian Gan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jilei Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
11
|
Zhang T, Hou S, Huo X, Li H, Shi H, Wang X, Liu C, Guo Y. Two-Pronged Approach: Synergistic Tuning of the Surface and Carbon Core to Achieve Yellow Emission in Lignin-Based Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42823-42835. [PMID: 37642200 DOI: 10.1021/acsami.3c07075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, yellow emissive lignin-based carbon dots (Y-CDs) were successfully prepared through a synergistic approach to adjust its surface and carbon core states. The lignin was initially effectively oxidized and carboxymethylated to impart abundant -COOH onto the precursor, which eventually adjusts the surface state of the CDs. Subsequently, α-naphthol was employed during the solvothermal treatment of lignin with the aim of elevating the sp2 domain content in the CDs and, thus, adjusting its carbon core state. The obtained Y-CDs possessed abundant carboxyl groups and nanoscale spherical shape with an average diameter of 5.21 nm. Meanwhile, the energy gap of Y-CDs was 2.46 eV and the optimal emission wavelength was 561 nm under the excitation wavelength of 410 nm. Synergistic adjusting carbon core and surface of the Y-CDs would alter the surface charge distribution and promote the delocalization of π electrons, and thus lead to a red shifting with the emission wavelength of 154 nm. Furthermore, a shape memory film with excellent recovery performance and fluorescent properties was designed by embedding the Y-CDs into polyvinyl alcohol (PVA) polymer. The incorporation of Y-CDs could impart the film with considerable high-value applications in the fields of intelligent sensing, biomedicine, and tissue engineering.
Collapse
Affiliation(s)
- Tao Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shiyao Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaomin Huo
- Dalian Product Quality Inspection and Testing Institute Co., Ltd, Dongying 257335, China
| | - Haiming Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changbin Liu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
- Huatai Group Corp. Ltd, Dongying 257335, China
| |
Collapse
|
12
|
Wu W, Luo Z, Liu B, Qiu X, Lin J, Sun S, Wang X, Lin X, Qin Y. Zinc Vacancy Promotes Photo-Reforming Lignin Model to H 2 Evolution and Value-Added Chemicals Production. SMALL METHODS 2023; 7:e2300462. [PMID: 37254264 DOI: 10.1002/smtd.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Lignin, rich in β-O-4 bonds and aromatic structure, is a renewable and potential resource for value-added chemicals and promoting H2 evolution. However, direct photo-reforming lignin remains a huge challenge due to its recalcitrant structure. Herein, a collaborative strategy is proposed by dispersing Pt on zinc-vacancy-riched ZnIn2 S4 (Pt/VZn -ZIS) for revealing the effect of lignin structure during photo-reforming process with lignin models. And a series of theoretical calculations and experimental results show that lignin model substances with more nucleophilic group structures will have a stronger tendency to occur the photo-reforming reactions. In addition, benefiting of Pt-S electronic channel is formed by occupying Pt atom onto zinc vacancies in ZnIn2 S4 , which can effectively reduce the energy barrier of H2 evolution and accompany the selective oxidation of lignin model from Cα-OH to Cα = O under simulated sunlight. The natural lignin is used to further demonstrate this selective oxidation mechanism. The presented work demonstrates the photo-reforming lignin model mechanism and the influence of lignin-structure during the process of photo-reforming.
Collapse
Affiliation(s)
- Weidong Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhicheng Luo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Bowen Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jinxin Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xiaofei Wang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xuliang Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yanlin Qin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
13
|
Zhu L, Shen D, Zhang H, Luo KH, Li C. Fabrication of Z-scheme Bi 7O 9I 3/g-C 3N 4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (Ⅵ) and organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130663. [PMID: 36608584 DOI: 10.1016/j.jhazmat.2022.130663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Chromium(VI) (Cr(VI)), a highly toxic metal ion, generally co-exists with organic pollutants in industrial effluents. The clean and effective technology for water purification is an imperative issue but still a challenging task. A series of Bi7O9I3/g-C3N4 (BOI/CN) composites modified by lignin-derived carbon quantum dots (CQDs) were fabricated by hydrothermal method and applied for synchronous photocatalytic removal of Cr (Ⅵ) and levofloxacin (LEV). With the modification of CQDs in BOI/CN heterojunction, the 0.5-CQD/BOI/CN photocatalyst (0.5% content of CQDs) exhibited stronger light-harvesting capacity, more efficient charge separation, and faster electron transfer. Compared to those of BOI (51.2%), CN (36.8%), and BOI/CN (74.4%), the photoreduction efficiency of Cr(VI) reached up to 100% by 0.5-CQD/BOI/CN under 60 min of light irradiation, together with 94.8% degradation efficiency of LEV. The degradation of LEV was dominantly controlled by active species (•OH and •O2-) identified by electron paramagnetic resonance analysis and free radical trapping experiments. The intermediates of LEV were determined by LC-MS and the possible degradation pathway was speculated in combination with density functional theory calculation, involving defluorination, decarboxylation, quinolone rings opening, and piperazine moieties oxidation reactions. This work provides an advanced strategy for the fabrication of high-efficiency CQDs-based Z-scheme photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Kai Hong Luo
- Department of Mechanical Engineering, University College London, London WC1E7JE, UK
| | - Chong Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China
| |
Collapse
|
14
|
Recent advances in lignin-based carbon materials and their applications: A review. Int J Biol Macromol 2022; 223:980-1014. [PMID: 36375669 DOI: 10.1016/j.ijbiomac.2022.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.
Collapse
|
15
|
Non-toxic carbon dots fluorescence sensor based on chitosan for sensitive and selective detection of Cr (VI) in water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Huang H, Li S, Chen B, Wang Y, Shen Z, Qiu M, Pan H, Wang W, Wang Y, Li X. Endoplasmic reticulum-targeted polymer dots encapsulated with ultrasonic synthesized near-infrared carbon nanodots and their application for in vivo monitoring of Cu 2. J Colloid Interface Sci 2022; 627:705-715. [PMID: 35878461 DOI: 10.1016/j.jcis.2022.07.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) is the largest organelle in eukaryotic cells and plays a variety of functions in living cells include protein folding, calcium homeostasis, and lipid biosynthesis. Normal function of ER is crucial for cell survival, while disequilibrium of ER can cause misfolding of proteins and ER stress, leading to many serious diseases. It has been documented that ER stress is closely related to the metabolism of Cu2+, as ER is the main intracellular accumulation space of Cu2+ and toxic reactive oxygen species can be generated by Cu2+ via Fenton and Haber-Weiss reactions. In this context, developing a powerful tool capable of selective and sensitive monitoring of Cu2+ in ER and investigating its role in physiological and pathological processes is of great importance. Herein, we report the first ER targeted near infrared (NIR) nanosensor, polymer dots encapsulated with NIR hydrophobic carbon nanodots, for detecting Cu2+ in biosystems. This nanosensor with stable fluorescence showed a fast response toward Cu2+ (120 s) and can be used for the quantification of Cu2+ in a linear range covering from 0.25 to 9.0 μM with a detection limit of 13 nM. In addition, the fluorescence variations of the nanosensor are remarkably specific to Cu2+ in comparison with the other metal ions and amino acids. Moreover, the developed nanosensor exhibited low cytotoxicity, good biocompatibility, and ER targeting ability. Because of these excellent spectroscopic features, the nanosensor was successfully utilized for visualizing Cu2+ fluctuations at the living cell, zebrafish and mouse levels, which further proved its potential application in biological systems.
Collapse
Affiliation(s)
- Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Shuai Li
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Biyun Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yuan Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ming Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hu Pan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Weikang Wang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yangang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xi Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
17
|
Facile Synthesis of Multi-Emission Nitrogen/Boron Co-Doped Carbon Dots from Lignin for Anti-Counterfeiting Printing. Polymers (Basel) 2022; 14:polym14142779. [PMID: 35890555 PMCID: PMC9316793 DOI: 10.3390/polym14142779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
The transformation of lignin with natural aromatic structure into value-added carbon dots (CDs) achieves a win-win situation for low-cost production of novel nanomaterials and reasonable disposal of biomass waste. However, it remains challenging to produce multi-emission CDs from biomass for advanced applications. Herein, a green and facile approach to preparing multi-emission CDs from alkali lignin via N and B co-doping is developed. The obtained N and B co-doped CDs (NB-CDs) show multi-emission fluorescence centers at 346, 428 and 514 nm under different excitations. As the doping amount of N and B increases, the fluorescence emission band gradually shifts to 428 and 514 nm, while that at 346 nm decreases. The fluorescence mechanism is explored through the research of the structure, composition and optical performance of NB-CDs in combination with density functional theory (DFT) calculations. It demonstrates that the effect of doping with B-containing functional groups on the fluorescence emission behavior is multivariate, which may be the crucial contribution to the unique multi-emission fluorescence of CDs. The multi-emission NB-CDs with prominent stability are applied for multilevel anti-counterfeiting printing. It provides a promising direction for the sustainable and advanced application of biomass-derived CDs, and the theoretical results highlight a new insight into the deep understanding of the multi-emission fluorescence mechanism.
Collapse
|