1
|
Wang C, Peng J, Xiao Y, Zhang Z, Yang X, Liang X, Yang J, Zhou X, Li C. Advances in nanotherapeutics for tumor treatment by targeting calcium overload. Colloids Surf B Biointerfaces 2024; 245:114190. [PMID: 39232477 DOI: 10.1016/j.colsurfb.2024.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Traditional antitumor strategies are facing challenges such as low therapeutic efficacy and high side effects, highlighting the significance of developing non-toxic or low-toxic alternative therapies. As a second messenger, calcium ion (Ca2+) plays an important role in cellular metabolism and communication. However, persistent Ca2+ overload leads to mitochondrial structural and functional dysfunction and ultimately induced apoptosis. Therefore, an antitumor strategy based on calcium overload is a promising alternative. Here, we first reviewed the classification of calcium-based nanoparticles (NPs) for exogenous Ca2+ overload, including calcium carbonate (CaCO3), calcium phosphate (CaP), calcium peroxide (CaO2), and hydroxyapatite (HA), calcium hydroxide, etc. Next, the current endogenous Ca2+ overload strategies were summarized, including regulation of Ca2+ channels, destruction of membrane integrity, induction of abnormal intracellular acidity and oxidative stress. Due to the specificity of the tumor microenvironment, it is difficult to completely suppress tumor development with monotherapy. Therefore, we reviewed the progress based on mitochondrial Ca2+ overload, which improved the treatment efficiency by combining photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), immunogenic cell death (ICD) and gas therapy. We further explored in detail the advantages and promising new targets of this combination antitumor strategies to better address future opportunities and challenges.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacy, Yibin Hospital Affiliated to Children's Hospital of Chongqing Medical University, Yibin, Sichuan 644000, China
| | - Junrong Peng
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiwei Xiao
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Yang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Zhao F, Wang C, Wang H, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Acidity-Responsive Fe-PDA@CaCO 3 Nanoparticles for Photothermal-Enhanced Calcium-Overload- and Reactive-Oxygen-Species-Mediated Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43364-43373. [PMID: 39105706 DOI: 10.1021/acsami.4c09143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Calcium-overload-mediated tumor therapy has received considerable interest in oncology. However, its efficacy has been proven to be inadequate due to insufficient calcium ion concentration at the tumor site coupled with challenges in facilitating efficient calcium uptake by tumors, leading to unsatisfactory therapeutic outcomes. In the present study, calcium carbonate nanoshell mineralized ferric polydopamine nanoparticles (Fe-PDA@CaCO3 NPs) were prepared for achieving Ca2+-overload-mediated tumor therapy. Upon entering the tumor site, the pH-responsive CaCO3 layer, acting as a "Ca2+ storage pool", rapidly degraded and released high quantities of free Ca2+ within the weakly acidic environment. The Fe-PDA core, with its excellent photothermal conversion properties, could significantly increase the temperature upon exposure to near-infrared (NIR) light irradiation, thereby activating the TRPV1 channel and leading to a large influx of released Ca2+ into the cytoplasm. Furthermore, the exposed Fe-PDA core could react with the tumor-overexpressed hydrogen peroxide (H2O2) to efficiently produce hydroxyl radicals (•OH), significantly increasing intracellular reactive oxygen species (ROS) levels and thus inhibiting the activity of the Ca2+ efflux pump, resulting in a high intracellular Ca2+ concentration. Ultimately, the increase in calcium/ROS levels could disrupt mitochondrial homeostasis and activate the apoptosis pathway. The current work presents a promising approach for tumor therapy using photothermal-enhanced calcium-overload-mediated ion interference therapy and chemodynamic therapy.
Collapse
Affiliation(s)
- Fan Zhao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Jiang Y, Lu H, Lei L, Yuan X, Scherman D, Liu Y. MOF-derived cobalt-iron containing nanocomposite with cascade-catalytic activities for multimodal synergistic tumor therapy. Colloids Surf B Biointerfaces 2024; 240:113981. [PMID: 38815310 DOI: 10.1016/j.colsurfb.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Reactive oxygen species (ROS)-driven chemodynamic therapy has emerged as a promising anti-tumor strategy. However, the insufficient hydrogen peroxide (H2O2) supply in tumor microenvironment results in a low Fenton reaction rate and subsequently poor ROS production and therapeutic efficacy. Herein, we report on a new nanocomposite MIL-53@ZIF-67/S loaded with doxorubicin and glucose oxidase, which is decomposed under the acidic tumor microenvironment to release Fe3+, Co3+, glucose oxidase, and doxorubicin. The released content leads to synergistic anti-tumor effect through the following manners: 1) doxorubicin is directly used for chemotherapy; 2) Fe3+and Co3+ result in glutathione depletion and Fenton reaction activation through Fe2+ and Co2+ generation to achieve chemodynamic therapy; 3) glucose oxidase continuously catalyzes glucose consumption to induce starvation of the cancer cells, and 4) at the same time the produced gluconic acid and H2O2 significantly promote Fenton reaction and further boost chemodynamic therapy. This work not only demonstrates the high anti-tumor effect of the new nanocomposite, but also provides an innovative strategy for the development of a multi-in-one nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Mechanics and Engineering Science, Beijing Innovation Centre for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China
| | - Hao Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lingli Lei
- College of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Daniel Scherman
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris F-75006, France.
| | - Yingshuai Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhou J, Hu Y, Cao Y, Ding S, Zeng L, Zhang Y, Cao M, Duan G, Zhang X, Bian XW, Tian G. A Lactate-Depleting metal organic framework-based nanocatalyst reinforces intratumoral T cell response to boost anti-PD1 immunotherapy. J Colloid Interface Sci 2024; 660:869-884. [PMID: 38277843 DOI: 10.1016/j.jcis.2024.01.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.
Collapse
Affiliation(s)
- Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China.
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| |
Collapse
|
5
|
Li S, Zhang H, Bao Y, Zhang H, Wang J, Liu M, Yan R, Wang Z, Wu X, Jin Y. Immunoantitumor Activity and Oxygenation Effect Based on Iron-Copper-Doped Folic Acid Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16653-16668. [PMID: 38520338 DOI: 10.1021/acsami.3c18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cancer metastasis and recurrence are closely associated with immunosuppression and a hypoxic tumor microenvironment. Chemodynamic therapy (CDT) and photothermodynamic therapy (PTT) have been shown to induce immunogenic cell death (ICD), effectively inhibiting cancer metastasis and recurrence when combined with immune adjuvants. However, the limited efficacy of Fenton's reaction and suboptimal photothermal effect present significant challenges for successfully inducing ICD through CDT and PTT. This paper described the synthesis and immunoantitumor activity of the novel iron-copper-doped folic acid carbon dots (CFCFB). Copper-doped folic acid carbon dots (Cu-FACDs) were initially synthesized via a hydrothermal method, using folic acid and copper gluconate as precursors. Subsequently, the nanoparticles CFCFB were obtained through cross-linking and self-assembly of Cu-FACDs with ferrocene dicarboxylic acid (FeDA) and 3-bromopyruvic acid (3BP). The catalytic effect of carbon dots in CFCFB enhanced the activity of the Fenton reaction, thereby promoting CDT-induced ICD and increasing the intracellular oxygen concentration. Additionally, 3BP inhibited cellular respiration, further amplifying the oxygen concentration. The photothermal conversion efficiency of CFCFB reached 55.8%, which significantly enhanced its antitumor efficacy through photothermal therapy. Immunofluorescence assay revealed that treatment with CFCFB led to an increased expression of ICD markers, including calreticulin (CRT) and ATP, as well as extracellular release of HMGB-1, indicating the induction of ICD by CFCFB. Moreover, the observed downregulation of ARG1 expression indicates a transition in the tumor microenvironment from an immunosuppressive state to an antitumor state following treatment with CFCFB. The upregulation of IL-2 and CD8 expression facilitated the differentiation of effector T cells, resulting in an augmented population of CD8+ T cells, thereby indicating the activation of systemic immune response.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
6
|
Zhou X, Wang Q, Lei Z, Zhang K, Zhen S, Yao H, Zu Y. Calcium Carbonate-Based Nanoplatforms for Cancer Therapeutics: Current State of Art and Future Breakthroughs. ACS OMEGA 2024; 9:12539-12552. [PMID: 38524488 PMCID: PMC10955594 DOI: 10.1021/acsomega.3c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
With the rapid development of nanotechnology, nanomaterials have shown immense potential for antitumor applications. Nanosized calcium carbonate (CaCO3) materials exhibit excellent biocompatibility and degradability, and have been utilized to develop platform technologies for cancer therapy. These materials can be engineered to carry anticancer drugs and functional groups that specifically target cancer cells and tissues, thereby enhancing therapeutic efficacy. Additionally, their physicochemical properties can be tailored to enable stimuli-responsive therapy and precision drug delivery. This Review consolidates recent literatures focusing on the synthesis, physicochemical properties, and multimodal antitumor therapies of CaCO3-based nanoplatforms (CBN). We also explore the current challenges and potential breakthroughs in the development of CBN for antitumor applications, providing a valuable reference for researchers in the field.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qihui Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zipeng Lei
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- Clinical
College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical
University, Hefei 230032, Anhui China
| | - Ke Zhang
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuxue Zhen
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Huiqin Yao
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Zu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang W, Li J, Chen L, Chen H, Zhang L. Palladium-based multifunctional nanoparticles for combined chemodynamic/photothermal and calcium overload therapy of tumors. Colloids Surf B Biointerfaces 2023; 230:113529. [PMID: 37708713 DOI: 10.1016/j.colsurfb.2023.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Due to the high mortality and incidence rates associated with tumors and the specificity of the tumor microenvironment (TME), it is difficult to achieve a complete cure for tumors using a single therapy. In this study, calcium carbonate-modified palladium hydride nanoparticles (PdH@CaCO3) were prepared and utilized for the combined treatment of tumors through chemodynamic therapy (CDT)/photothermal therapy (PTT) and calcium overload therapy. After entering tumor cells, PdH@CaCO3 releases calcium ions (Ca2+) and PdH once it reaches the TME due to the pH reactivity of the calcium carbonate coating. The mitochondrial membrane potential is lowered by the Ca2+, leading to irreversible cell damage. Meanwhile, PdH reacts with excessive hydrogen peroxide (H2O2) in the TME via the Fenton reaction, generating hydroxyl radicals (·OH). Moreover, PdH is an excellent photothermal agent that can kill tumor cells under laser irradiation, leading to significant anti-tumor effects. In vitro and in vivo studies have demonstrated that PdH@CaCO3 could combine CDT/PTT and calcium overload therapy, exhibiting great clinical potential in the treatment of tumors.
Collapse
Affiliation(s)
- Wenge Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiangyong Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lamei Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Huan Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Yang J, Fang L, Jiang R, Qi L, Xiao Y, Wang W, Ismail I, Fang X. RuCu Nanosheets with Ultrahigh Nanozyme Activity for Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2300490. [PMID: 37053081 DOI: 10.1002/adhm.202300490] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Nanoenzymes have been widely explored for chemodynamic therapy (CDT) in cancer treatment. However, poor catalytic efficiency of nanoenzymes, especially in the tumor microenvironment with insufficient H2 O2 and mild acidity, limits the effect of CDT. Herein, a new ultrathin RuCu nanosheet (NS) based nanoenzyme which has a large specific surface area and abundant channels and defects is developed. The RuCu NSs show superb catalytic efficiency for the oxidation of peroxidase substrate H2 O2 at a wide range of pH and their catalytic efficiency (kcat /Km = 177.2 m-1 s-1 ) is about 14.9 times higher than that of the single-atom catalyst FeN3 P. Besides being an efficient nanozyme as peroxidase, the RuCu NSs possess other two enzyme activities, not only disproportionating superoxide anion to produce H2 O2 but also consuming glutathione to keep a high concentration of H2 O2 in the tumor microenvironment for Fenton reaction. With these advantages, the RuCu NSs exhibit good performance to kill cancer cells and inhibit tumor growth in mice, demonstrating a promising potential as new CDT reagent.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Le Fang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ruibin Jiang
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| | - Lubin Qi
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Wenxi Wang
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ismail Ismail
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
9
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Manganese oxide-modified bismuth oxychloride piezoelectric nanoplatform with multiple enzyme-like activities for cancer sonodynamic therapy. J Colloid Interface Sci 2023; 640:839-850. [PMID: 36905893 DOI: 10.1016/j.jcis.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for enhancing SDT against cancer, in which manganese oxide (MnOx) with multiple enzyme-like activities is loaded on the surface of piezoelectric bismuth oxychloride nanosheets (BiOCl NSs) to form a heterojunction. When exposed to ultrasound (US) irradiation, piezotronic effect can remarkably promote the separation and transport of US-induced free charges, and further enhance ROS generation in SDT. Meanwhile, the nanoplatform shows multiple enzyme-like activities from MnOx, which can not only downregulate the intracellular glutathione (GSH) level, but also disintegrate endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and hydroxyl radicals (•OH). As a result, the anticancer nanoplatform substantially boosts ROS generation and reverses tumor hypoxia. Ultimately, it reveals remarkable biocompatibility and tumor suppression in a murine model of 4 T1 breast cancer under US irradiation. This work provides a feasible pathway for improving SDT using piezoelectric platforms.
Collapse
|
11
|
Lu JY, Zhou X, Yang J, Zhou Y, He B, Huang WT, Wang Y, Guo Z. Migration inhibition and selective cytotoxicity of cobalt hydroxide nanosheets on different cancer cell lines. NEW J CHEM 2022. [DOI: 10.1039/d2nj01466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5 nm-thick cobalt hydroxide nanosheets exhibited concentration-dependent selective antitumor activity and cell migration inhibition against a variety of cancer cells.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Xiaolong Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Jialiang Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
- Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Yi Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yajing Wang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Zhen Guo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, China
| |
Collapse
|