1
|
Lu H, Liang B, Hu A, Zhou H, Jia C, Aji A, Chen Q, Ma Y, Cui W, Jiang L, Dong J. Engineered Biomimetic Cancer Cell Membrane Nanosystems Trigger Gas-Immunometabolic Therapy for Spinal-Metastasized Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412655. [PMID: 39529570 DOI: 10.1002/adma.202412655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Despite great progress in enhancing tumor immunogenicity, conventional gas therapy cannot effectively reverse the tumor immunosuppressive microenvironment (TIME), limiting immunotherapy. The development of therapeutic gases that are tumor microenvironment responsive and efficiently reverse the TIME for precisely targeted tumor gas-immunometabolic therapy remains a great challenge. In this study, a novel cancer cell membrane-encapsulated pH-responsive nitric oxide (NO)-releasing biomimetic nanosystem (MP@AL) is prepared. Lactate oxidase (Lox) in MP@AL consumed oxygen to promote the decomposition of lactate, a metabolic by-product of tumor glycolysis, and the generation of H2O2, while L-arginine (L-Arg) in MP@AL is oxidized by H2O2 to generate nitric oxide (NO). For one thing, NO led to mitochondrial dysfunction in tumor cells to reduce oxygen consumption and promote the efficiency of Lox in lactate decomposition, thus reversing lactate-induced TIME; for another, NO effectively triggered immunogenic cell death, activated anti-tumor immune response and long-term immune memory, and ensured a favorable effect in the synergistic interaction with PD-L1 antibody for inhibiting tumor growth and recurrence. Therefore, a novel gas-immunometabolic therapy dual closed-loop nanosystem for enhancing tumor immunogenicity and remodeling lactate-induced TIME is established. Overall, this work will provide new ideas for gas therapy to effectively remodel the TIME to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Chao Jia
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Abudula Aji
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Ye C, Lin S, Li J, Meng P, Huang L, Li D. Comprehensive insights into fluorescent probes for the determination nitric oxide for diseases diagnosis. Bioorg Chem 2024; 150:107505. [PMID: 38865860 DOI: 10.1016/j.bioorg.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Nitric oxide (NO) plays an important role in multiple physiological processes of the body involved in regulation, such as cardiovascular relaxation, neural homeostasis, and immune regulation, etc. The real-time monitoring of NO is of great significance in the investigation of related disease mechanisms and the evaluation of pharmacodynamics. Fluorescent probes are considered as a highly promising approach for pharmaceutical analysis and bioimaging due to their non-invasive character, real-time detection, and high sensitivity. However, there are still some challenges in the determination of biological nitric oxide with fluorescent probes, such as low anti-interference ability, poor function modifiability, and low organ specificity. Therefore, it would be beneficial to develop a new generation of fluorescent probes for real-time bioimaging of NO in vivo after this systematic summary.
Collapse
Affiliation(s)
- Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Jinyi Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Peng Meng
- Fujian Inspection and Research Institute for Product Quality, Fuzhou 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
3
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Bai Q, Wang M, Liu J, Sun X, Yang P, Qu F, Lin H. Porous Molybdenum Nitride Nanosphere as Carrier-Free and Efficient Nitric Oxide Donor for Synergistic Nitric Oxide and Chemo/Sonodynamic Therapy. ACS NANO 2023; 17:20098-20111. [PMID: 37805936 DOI: 10.1021/acsnano.3c05790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Given its abundant physiological functions, nitric oxide (NO) has attracted much attention as a cancer therapy. The sensitive release and great supply capacity are significant indicators of NO donors and their performance. Here, a transition metal nitride (TMN) MoN@PEG is adopted as an efficient NO donor. The release process starts with H+-triggered denitrogen owing to the high electronegativity of the N atom and weak Mo-N bond. Then, these active NHx are oxidized by O2 and other reactive oxygen species (ROS) to form NO, endowing specific release to the tumor microenvironment (TME). With a porous nanosphere structure (80 nm), MoN@PEG does not require an extra carrier for NO delivery, contributing to ultrahigh atomic utilization for outstanding release ability (94.1 ± 5.6 μM). In addition, it can also serve as a peroxidase and sonosensitizer for anticancer treatment. To further improve the charge separation, MoN-Pt@PEG was prepared to enhance the sonodynamic therapy (SDT) effect. Accordingly, ultrasound (US) further promotes NO generation due to more ROS generation, facilitating in situ peroxynitrite (·ONOO-) generation with great cytotoxicity. At the same time, the nanostructure also degrades gradually, leading to high elimination (94.6%) via feces and urine within 14-day. The synergistic NO and chemo-/sono-dynamic therapy brings prominent antitumor efficiency and further activates the immune response to inhibit metastasis and recurrence. This work develops a family of NO donors that would further widen the application of NO therapy in other fields.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
5
|
Chen N, Li Y, Li H, Wang Y, Zeng Y, Zhang M, Pan Z, Chen Z, Liang W, Huang J, Zhang K, Liu X, He Y. Multifunctional CuFe 2O 4@HA as a GSH-depleting nanoplatform for targeted photothermal/enhanced-chemodynamic synergistic therapy. Colloids Surf B Biointerfaces 2023; 229:113445. [PMID: 37441838 DOI: 10.1016/j.colsurfb.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chemodynamic therapy (CDT), which converts overexpressed hydrogen peroxide (H2O2) in tumor cells to hydroxyl radicals (•OH) by Fenton reactions, is considered a prospective strategy in anticancer therapy. However, the high level of glutathione (GSH) and poor Fenton catalytic efficiency contribute to the suboptimal efficiency of CDT. Herein, we present a multifunctional nanoplatform (CuFe2O4@HA) that can induce GSH depletion and combine with photothermal therapy (PTT) to enhance antitumor efficacy. CuFe2O4@HA nanoparticles could release Cu2+ and Fe3+ after entering tumor cells by targeting hyaluronic acid (HA). Subsequently, Cu2+ and Fe3+ were reduced to Cu+ and Fe2+ by GSH, where Cu+/Fe2+ significantly catalyzed H2O2 to produce a higher level of •OH, and the depletion of GSH disrupted the antioxidant capacity of the tumor. Therefore, depleting GSH substantially enhances the level of •OH in tumor cells. In addition, CuFe2O4@HA nanoparticles have considerable absorption in the near-infrared (NIR) region, which can stimulate excellent PTT effects. More importantly, the heat generated by PTT can further enhance the Fenton catalysis efficiency. In vitro and in vivo experiments have demonstrated the excellent tumor-killing effect of CuFe2O4@HA nanoparticles. This strategy overcomes the problem of insufficient CDT efficacy caused by GSH overexpression and poor catalytic efficiency. Moreover, this versatile nanoplatform provides a reference for self-enhanced CDT and PTT/CDT synergistic targeted therapy.
Collapse
Affiliation(s)
- Niping Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haihong Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zefeng Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Huang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Shi H, Xiong CF, Zhang LJ, Cao HC, Wang R, Pan P, Guo HY, Liu T. Light-Triggered Nitric Oxide Nanogenerator with High l-Arginine Loading for Synergistic Photodynamic/Gas/Photothermal Therapy. Adv Healthc Mater 2023; 12:e2300012. [PMID: 36929147 DOI: 10.1002/adhm.202300012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 03/18/2023]
Abstract
The development of nanomedicines that combine photothermal therapy (PTT) with photodynamic therapy (PDT) is considered promising for cancer treatment, but still faces the challenge of enhancing tumoricidal efficiency. Fortunately, apart from the well-acknowledged effect on direct tumor cell-killing, nitric oxide (NO) is also considered to be effective for the enhancement of both PTT and PDT. However, both the low loading efficiency of NO precursor and the short half-life time and diffusion distance of NO hamper the synergistic therapeutic efficacy of NO. Taking the aforementioned factors into account, a mitochondria-targeted nitric oxide nanogenerator, EArgFe@Ce6, is constructed to achieve high loading of the NO donor l-Arginine (l-Arg) for synergistic photodynamic/gas/photothermal therapy upon single 660 nm light irradiation. The coordination of epigallocatechin gallate (EGCG) and ferric ions (Fe3+ ) provides EArgFe@Ce6 supreme photothermal capability to perform low-temperature PTT (mPTT). EGCG endows EArgFe@Ce6 with mitochondria-targeting capability and meanwhile favors hypoxia alleviation for enhanced PDT. The PDT-produced massive reactive oxygen species (ROS) further catalyzes l-Arg to generate a considerable amount of NO to perform gas therapy and sensitize both mPTT and PDT. In vitro and in vivo studies demonstrate that the synergistic photodynamic/gas/photothermal therapy triggered by single 660 nm light irradiation is highly effective for tumor treatments.
Collapse
Affiliation(s)
- Hui Shi
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Cheng-Feng Xiong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Lin-Jun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hu-Chen Cao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Ru Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hai-Yan Guo
- School of Public Health, Anhui Medical University, Hefei, 230032, P. R. China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
7
|
Wang C, Tian G, Yu X, Zhang X. Recent Advances in Functional Nanomaterials for Catalytic Generation of Nitric Oxide: A Mini Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207261. [PMID: 36808830 DOI: 10.1002/smll.202207261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.
Collapse
Affiliation(s)
- Chengyan Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Gan Tian
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| |
Collapse
|
8
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|