1
|
Li Y, Xiong Z, Feng Y, Jiang H, Sun Y, Kwok MH. Facile Preparation of Silica/Tannic Acid/Zein Microcapsules Templated from Non-Aqueous Pickering Emulsions and their Application in Cargo Protection. Macromol Rapid Commun 2024; 45:e2400289. [PMID: 39073047 DOI: 10.1002/marc.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of β-carotene.
Collapse
Affiliation(s)
- Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiqiang Xiong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yikai Feng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yajuan Sun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
2
|
Taylor CL, Klemm A, Al-Mahbobi L, Bradford BJ, Gurkan B, Pentzer EB. Ionic Liquid-Glycol Mixtures for Direct Air Capture of CO 2: Decreased Viscosity and Mitigation of Evaporation Via Encapsulation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7882-7893. [PMID: 38783843 PMCID: PMC11110104 DOI: 10.1021/acssuschemeng.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Herein we address the efficiency of the CO2 sorption of ionic liquids (IL) with hydrogen bond donors (e.g., glycols) added as viscosity modifiers and the impact of encapsulating them to limit sorbent evaporation under conditions for the direct air capture of CO2. Ethylene glycol, propylene glycol, 1,3-propanediol, and diethylene glycol were added to three different ILs: 1-ethyl-3-methylimidazolium 2-cyanopyrrolide ([EMIM][2-CNpyr]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). Incorporation of the glycols decreased viscosity by an average of 51% compared to bulk IL. After encapsulation of the liquid mixtures using a soft template approach, thermogravimetric analysis revealed average reductions in volatility of 36 and 40% compared to the unencapsulated liquid mixtures, based on 1 h isothermal experiments at 25 and 55 °C, respectively. The encapsulated mixtures of [EMIM][2-CNpyr]/1,3-propanediol and [EMIM][2-CNpyr]/diethylene glycol exhibited the lowest volatility (0.0019 and 0.0002 mmol/h at 25 °C, respectively) and were further evaluated as CO2 absorption/desorption materials. Based on the capacity determined from breakthrough measurements, [EMIM][2-CNpyr]/1,3-propanediol had a lower transport limited absorption rate for CO2 sorption compared to [EMIM][2-CNpyr]/diethylene glycol with 0.08 and 0.03 mol CO2/kg sorbent, respectively; however, [EMIM][2-CNpyr]/diethylene glycol capsules exhibited higher absorptions capacity at ∼500 ppm of CO2 (0.66 compared to 0.47 mol of CO2/kg sorbent for [EMIM][2-CNpyr]/1,3-propanediol). These results show that glycols can be used to not only reduce IL viscosity while increasing physisorption sites for CO2 sorption, but also that encapsulation can be utilized to mitigate evaporation of volatile viscosity modifiers.
Collapse
Affiliation(s)
- Cameron
D. L. Taylor
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Aidan Klemm
- Department
of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Luma Al-Mahbobi
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - B. Jack Bradford
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Burcu Gurkan
- Department
of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Emily B. Pentzer
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Starvaggi NC, Somodi CB, Barrios EC, Shamberger PJ, Pentzer EB. Microcapsule fabrication by ATRP at the interface of non-aqueous emulsions. Chem Commun (Camb) 2024; 60:4346-4349. [PMID: 38545873 DOI: 10.1039/d4cc00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We present soft-template encapsulation of salt hydrate phase change materials (PCMs) using modified silica particles to both stabilize emulsions and serve as initiators for organocatalyzed photoredox ATRP. The resulting core-shell structures have high core loading and are robust to thermal cycling. Critically, this strategy eliminates the need for a reagent in the core phase, thus preserving purity, and offers the ability to tailor shell composition for desired applications.
Collapse
Affiliation(s)
| | - Chase B Somodi
- Dept. of Materials Science & Engineering, College Station, TX 77843, USA
| | | | | | - Emily B Pentzer
- Dept. of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Dept. of Materials Science & Engineering, College Station, TX 77843, USA
| |
Collapse
|
4
|
Chen C, Fu Q, Cao R, Chen Z, Zhang Z, Xia K, You N, Jiang Y, Zhang Y. Experimental Study and Mechanism Analysis of Paraffin/Sisal Composite Phase Change Energy Storage Fiber Prepared by Vacuum Adsorption Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:467. [PMID: 38255634 PMCID: PMC10817251 DOI: 10.3390/ma17020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Sisal fiber exhibits a fibrous and porous structure with significant surface roughness, making it highly suitable for storing phase change materials (PCMs). Its intricate morphology further aids in mitigating the risk of PCM leakage. This research successfully employs vacuum adsorption to encapsulate paraffin within sisal fiber, yielding a potentially cost-effective, durable, and environmentally friendly phase change energy storage medium. A systematic investigation was carried out to evaluate the effects of sisal-to-paraffin mass ratio, fiber length, vacuum level, and negative pressure duration on the loading rate of paraffin. The experimental results demonstrate that a paraffin loading rate of 8 wt% can be achieved by subjecting a 3 mm sisal fiber to vacuum adsorption with 16 wt% paraffin for 1 h at -0.1 MPa. Through the utilization of nano-CT imaging enhancement technology, along with petrographic microscopy, this study elucidates the mechanism underlying paraffin storage within sisal fiber during vacuum adsorption. The observations reveal that a substantial portion of paraffin is primarily stored within the pores of the fiber, while a smaller quantity is firmly adsorbed onto its surface, thus yielding a durable phase change energy storage medium. The research findings contribute to both the theoretical foundations and the available practical guidance for the fabrication and implementation of paraffin/sisal fiber composite phase change energy storage mediums.
Collapse
Affiliation(s)
- Chun Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Qi Fu
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Ruilin Cao
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Zhenzhong Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Zedi Zhang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Kailun Xia
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Nanqiao You
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifan Jiang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| | - Yamei Zhang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (C.C.); (Q.F.)
| |
Collapse
|
5
|
Lak S, Hsieh CM, AlMahbobi L, Wang Y, Chakraborty A, Yu C, Pentzer EB. Printing Composites with Salt Hydrate Phase Change Materials for Thermal Energy Storage. ACS APPLIED ENGINEERING MATERIALS 2023; 1:2279-2287. [PMID: 38356854 PMCID: PMC10862487 DOI: 10.1021/acsaenm.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 02/16/2024]
Abstract
Salt hydrate phase change materials are important in advancing thermal energy storage technologies for the development of renewable energies. At present, their widespread use is limited by undesired undercooling and phase separation, as well as their tendency to corrode container materials. Herein, we report a direct ink writing (DIW) additive manufacturing technique to print noncorrosive salt hydrate composites with thoroughly integrated nucleating agents and thermally conductive additives. First, salt hydrate particles are prepared from nonaqueous Pickering emulsions and then employed as rheological modifiers to formulate thixotropic inks with polymer dispersions in toluene serving as the matrix. These inks are successfully printed at room temperature and cured by solvent evaporation under ambient conditions. The resulting printed and cured composites, containing up to 70 wt % of the salt hydrate, exhibit reliable thermal cyclability for 10 cycles and suppressed undercooling compared to the bulk salt hydrate. Remarkably, the composites consistently maintain their structural integrity and thermal performance throughout the entirety of both the melting and solidification processes. We demonstrate the versatility of this approach by utilizing two salt hydrates, magnesium nitrate hexahydrate (MNH, Tm = 89 °C) and zinc nitrate hexahydrate (ZNH, Tm = 36 °C), to achieve desired thermal characteristics across a wide range of temperatures. Further, we establish that the incorporation of carbon black in these inks enhances the thermal conductivity by at least 33%. This approach consolidates the strengths of additive manufacturing and salt hydrate phase change materials to harness customizable thermal properties, well suited for targeted thermal energy management applications.
Collapse
Affiliation(s)
- Sarah
N. Lak
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chia-Min Hsieh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Luma AlMahbobi
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Yifei Wang
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Anirban Chakraborty
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Choongho Yu
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Emily B. Pentzer
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Chen J, Sun S, Wang Y, Feng W, Luo Y, Li M, Shi S. All-oil Constructs Stabilized by Cellulose Nanocrystal Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37247323 DOI: 10.1021/acsami.3c04539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Constructing all-oil systems with desired geometries and responsiveness would produce a new class of reconfigurable materials that can be used for applications that are not compatible with water or aqueous systems, a fascinating goal to achieve but severely limited by the lack of surfactants. Here, we demonstrate an efficient strategy to stabilize oil-oil interfaces by using the co-assembly between the cellulose nanocrystal and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2). Cellulose nanocrystal surfactants (CNCSs) form and assemble in situ at the interface, showing significantly enhanced binding energy and acid-dependent interfacial activity. When CNCSs jam at the interface, a robust assembly with exceptional mechanical properties can be achieved, allowing the 3D printing of all-oil devices on demand. Using CNCSs as emulsifiers, oil-in-oil high internal phase emulsions can be prepared by one-step homogenization and, when used as templates, porous materials that require water-sensitive monomers can be synthesized. These results open a new platform for stabilizing and structuring all-oil systems, providing numerous applications for microreactors, encapsulation, delivery, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyi Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weixiao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzheng Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|