1
|
Sun W, Zuo Y, Niu Y, Che G, Liu C, Dong H. Control interfacial charge transfer behavior by creating surface defects on structure unit of heterojunction to drive carrier separation for enhancing photocatalytic CO 2 reduction. J Colloid Interface Sci 2025; 677:820-830. [PMID: 39121666 DOI: 10.1016/j.jcis.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.
Collapse
Affiliation(s)
- Wei Sun
- College of Engineering, Jilin Normal University, Siping 136000, PR China
| | - Yan Zuo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaling Niu
- Baicheng Normal University, Baicheng 137000, PR China
| | - Guangbo Che
- Baicheng Normal University, Baicheng 137000, PR China.
| | - Chunbo Liu
- College of Engineering, Jilin Normal University, Siping 136000, PR China.
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Xiong R, Li J, Liu F, Wu Y, Xiao Y, Cheng B, Lei S. Interfacial Bi-S chemical bond-coupled sulfur vacancy in Bi 4NbO 8Cl@ZnIn 2S 4-x S-scheme heterojunction for superior photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 682:690-702. [PMID: 39642554 DOI: 10.1016/j.jcis.2024.11.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Strategies such as reducing charge transfer resistance and enhancing transmission driving force are considered effective in achieving higher photocatalytic performance. In this study, Bi4NbO8Cl@ZnIn2S4-x S-scheme heterojunction photocatalyst with atomic-level interface Bi-S chemical bond connection was successfully constructed through in-situ growth of ZnIn2S4-x nanosheets containing sulfur vacancies (Sv) on Bi4NbO8Cl microplates. Firstly, the S-scheme charge transfer mode effectively spatially separated photogenerated carriers while retaining their reactivity to the maximum extent. Secondly, the interfacial Bi-S bond served as a "bridge" to lessen the interface resistance and provide a high-speed channel for the transmission of photogenerated carriers. Lastly, Sv effectively expanded the Fermi level (Ef) difference between the two semiconductors in the heterojunction, so as to enlarge the built-in electric field (IEF) at the interface and reinforce the driving force for charge transfer. Owing to the synergistic effects of these advantages, the Bi4NbO8Cl@ZnIn2S4-x composite exhibited an average hydrogen production rate of up to 8.7 mmol g-1 h-1 under visible light, which was 4.0 and 14.5 times that of ZnIn2S4-x and Bi4NbO8Cl samples, respectively. This work presents a novel approach for designing interfacial chemically bonded S-scheme heterojunction photocatalysts with high catalytic activity.
Collapse
Affiliation(s)
- Renzhi Xiong
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Jingmei Li
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Fangde Liu
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Yuhao Wu
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
3
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
4
|
Yang W, Zhou F, Sun N, Wu J, Qi Y, Zhang Y, Song J, Sun Y, Liu Q, Wang X, Mi J, Li M. Constructing a 3D Bi 2WO 6/ZnIn 2S 4 direct Z-scheme heterostructure for improved photocatalytic CO 2 reduction performance. J Colloid Interface Sci 2024; 662:695-706. [PMID: 38368827 DOI: 10.1016/j.jcis.2024.02.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 μmol g-1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.
Collapse
Affiliation(s)
- Wu Yang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Fanghe Zhou
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ningchao Sun
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiang Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Yongfeng Qi
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yonglin Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jingyu Song
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yijing Sun
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qizhen Liu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Xudong Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianing Mi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Miao Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
5
|
Ahmad I, Al-Qattan A, Iqbal MZ, Anas A, Khasawneh MA, Obaidullah AJ, Mahal A, Duan M, Al Zoubi W, Ghadi YY, Al-Zaqri N, Xia C. A systematic review on Nb 2O 5-based photocatalysts: Crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Adv Colloid Interface Sci 2024; 324:103093. [PMID: 38306848 DOI: 10.1016/j.cis.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture-38040, Faisalabad, Pakistan
| | - Ayman Al-Qattan
- Energy and Building Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | | | - Alkhouri Anas
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 15551, United Arab Emirates.
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, People's Republic of China
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
6
|
Wu Y, Wang Z, Yan Y, Wei Y, Wang J, Shen Y, Yang K, Weng B, Lu K. Rational Photodeposition of Cobalt Phosphate on Flower-like ZnIn 2S 4 for Efficient Photocatalytic Hydrogen Evolution. Molecules 2024; 29:465. [PMID: 38257378 PMCID: PMC10821521 DOI: 10.3390/molecules29020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocatalytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the separation of electron-hole by promoting the transfer of photogenerated holes of ZnIn2S4. The study reveals that the composite catalyst has superior photocatalytic performance than blank ZnIn2S4. In particular, ZnIn2S4 loaded with 5% Co-Pi (ZnIn2S4/5%Co-Pi) has the best photocatalytic activity, and the H2 production rate reaches 3593 μmol·g-1·h-1, approximately double that of ZnIn2S4 alone. Subsequent characterization data demonstrate that the introduction of the cocatalyst Co-Pi facilitates the transfer of ZnIn2S4 holes, thus improving the efficiency of photogenerated carrier separation. This investigation focuses on the rational utilization of high-content and rich cocatalysts on earth to design low-cost and efficient composite catalysts to achieve sustainable photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yonghui Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhipeng Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yuqing Yan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu Wei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jun Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yunsheng Shen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
7
|
Guan W, Jia R, Zhang L, Meng M, Wang P, Wang Y, Wang H, Dong X, Sui L, Gan Z, Dong L, Yu L. Construction of PdSe 2/ZnIn 2S 4 heterojunctions with covalent interface for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 649:685-693. [PMID: 37385033 DOI: 10.1016/j.jcis.2023.06.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Constructing semiconductor heterojunctions can enable novel schemes for highly efficient photocatalytic activity. However, introducing strong covalent bonding at the interface remains an open challenge. Herein, ZnIn2S4 (ZIS) with abundant sulfur vacancies (Sv) is synthesized with the presence of PdSe2 as an additional precursor. The sulfur vacancies of Sv-ZIS are filled by Se atoms of PdSe2, leading to the Zn-In-Se-Pd compound interface. Our density functional theory (DFT) calculations reveal the increased density of states at the interface, which will increase the local carrier concentration. Moreover, the length of the Se-H bond is longer than that of the SH bond, which is good for the evolution of H2 from the interface. In addition, the charge redistribution at the interface results in a built-in field, providing the driving force for efficient separation of photogenerated electron-hole. Therefore, the PdSe2/Sv-ZIS heterojunction with strong covalent interface exhibits an excellent photocatalytic hydrogen evolution performance (4423 μmol g-1h-1) with an apparent quantum efficiency (λ > 420 nm) of 9.1 %. This work will provide new inspirations to improve photocatalytic activity by engineering the interfaces of semiconductor heterojunctions.
Collapse
Affiliation(s)
- Wei Guan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ruiming Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lin Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ming Meng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
| | - Peng Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Haoyu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xingchen Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lina Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixing Gan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, PR China.
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
Chang YC, Chiao YC, Hsu PC. Rapid Microwave-Assisted Synthesis of ZnIn 2S 4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1957. [PMID: 37446473 DOI: 10.3390/nano13131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this study, a facile and rapid microwave-assisted synthesis method was used to synthesize In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies. The two-dimensional semiconductor photocatalysts of ZnIn2S4 nanosheets were characterized by XRD, FESEM, BET, TEM, XPS, UV-vis diffuse reflectance, and PL spectroscopy. The ZnIn2S4 with sulfur vacancies exhibited an evident energy bandgap value of 2.82 eV, as determined by UV-visible diffuse reflectance spectroscopy, and its energy band diagram was obtained through the combination of XPS and energy bandgap values. ZnIn2S4 nanosheets exhibited about 33.3 and 16.6 times higher photocatalytic hydrogen production than In2S3 nanosheets and ZnS nanosheets, respectively, under visible-light irradiation. Various factors, including materials, sacrificial reagents, and pH values, were used to evaluate the influence of ZnIn2S4 nanosheets on photocatalytic hydrogen production. In addition, the ZnIn2S4 nanosheets revealed the highest photocatalytic hydrogen production from seawater, which was about 209.4 and 106.7 times higher than that of In2S3 nanosheets and ZnS nanosheets, respectively. The presence of sulfur vacancies in ZnIn2S4 nanosheets offers promising opportunities for developing highly efficient and stable photocatalysts for photocatalytic hydrogen production from seawater under visible-light irradiation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Yung-Chang Chiao
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Yao X, Jiang X, Zhang D, Lu S, Wang M, Pan S, Pu X, Liu J, Cai P. Achieving improved full-spectrum responsive 0D/3D CuWO 4/BiOBr:Yb 3+,Er 3+ photocatalyst with synergetic effects of up-conversion, photothermal effect and direct Z-scheme heterojunction. J Colloid Interface Sci 2023; 644:95-106. [PMID: 37094476 DOI: 10.1016/j.jcis.2023.04.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The key to obtain effective photocatalysts is to increase the efficiency of light energy conversion, and thus the design and implementation of full-spectrum photocatalysts is a potential approach to solve this problem especially by extending the absorption range to near-infrared (NIR) light. Herein, the improved full-spectrum responsive CuWO4/BiOBr:Yb3+,Er3+ (CW/BYE) direct Z-scheme heterojunction was prepared. The CW/BYE with CW mass ratio of 5% had the best degradation performance, and the removal rate of tetracycline reached 93.9% in 60 min and 69.4% in 12 h under visible (Vis) and NIR light, respectively, which were 5.2 and 3.3 times of BYE. According to the outcome of experimental, the reasonable mechanism of improved photoactivity was put forward on the basis of (i) the up-conversion (UC) effect of Er3+ ion to convert NIR photon to ultraviolet or visible light, which can be used by CW and BYE, (ii) the photothermal effect of CW to absorb the NIR light, increasing the local temperature of photocatalyst particle to accelerate the photoreaction, and (iii) the formed direct Z-scheme heterojunction between BYE and CW to boost the separation of photogenerated electron-hole pairs. Additionally, the excellent photostability of the photocatalyst was verified by cycle degradation experiments. This work opens up a promising technique for designing and synthesizing full-spectrum photocatalysts by utilizing synergetic effects of UC, photothermal effect and direct Z-scheme heterojunction.
Collapse
Affiliation(s)
- Xintong Yao
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xue Jiang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China.
| | - Shuya Lu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Mengyao Wang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Sihan Pan
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China.
| | - Junchang Liu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| |
Collapse
|
10
|
Yu X, Qiu P, Wang Y, He B, Xu X, Zhu H, Ding J, Liu X, Li Z, Wang Y. Defect-induced charge redistribution of MoO 3-x nanometric wires for photocatalytic ammonia synthesis. J Colloid Interface Sci 2023; 640:775-782. [PMID: 36907146 DOI: 10.1016/j.jcis.2023.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Photocatalytic ammonia synthesis technology has become one of the effective methods to replace the Haber method for nitrogen fixation in the future for its low energy consumption and green environment. However, limited by the weak adsorption/activation ability of N2 molecules at the photocatalyst interface, the efficient nitrogen fixation still remains a daunting job. Defect-induced charge redistribution as a catalytic site for N2 molecules is the most prominent strategy to enhance the adsorption/activation of N2 molecules at the interface of catalysts. In this study, MoO3-x nanowires containing asymmetric defects were prepared by a one-step hydrothermal method via using glycine as a defect inducer. It is shown that at the atomic scale, the defect-induced charge reconfiguration can significantly improve the nitrogen adsorption and activation capacity and enhance the nitrogen fixation capacity; at the nanoscale, the charge redistribution induced by asymmetric defects effectively improved the photogenerated charge separation. Given the charge redistribution on the atomic and nanoscale of MoO3-x nanowires, the optimal nitrogen fixation rate of MoO3-x reached 200.35 µmol g-1h-1.
Collapse
Affiliation(s)
- Xinru Yu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Peng Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yongchao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bing He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xiangran Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Huiling Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jian Ding
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|