1
|
Wang Z, Li Z, Du Z, Geng J, Zong W, Chen R, Dong H, Gao X, Zhao F, Wang T, Munshi T, Liu L, Zhang P, Shi W, Wang D, Wang Y, Wang M, Xiong F, He G. Na 3V 2(PO 4) 3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations. J Colloid Interface Sci 2024; 682:760-783. [PMID: 39644747 DOI: 10.1016/j.jcis.2024.11.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhi Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zijuan Du
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK.
| | - Jiajun Geng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Wei Zong
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ruwei Chen
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Haobo Dong
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Xuan Gao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Fangjia Zhao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Tianlei Wang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford PoolLincoln, Lincolnshire LN6 7TS, UK
| | - Lingyang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Wenjing Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Yaoyao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK.
| |
Collapse
|
2
|
Liu W, Cui W, Yi C, Xia J, Shang J, Hu W, Wang Z, Sang X, Li Y, Liu J. Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries. Nat Commun 2024; 15:9889. [PMID: 39543206 PMCID: PMC11564968 DOI: 10.1038/s41467-024-54317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
K-containing polyanion compounds hold great potential as anodes for sodium-ion batteries considering their large ion transport channels and stable open frameworks; however, sodium storage behavior has rarely been studied, and the mechanism remains unclear. Here, using a noninterference KTiOPO4 thin-film model, the Na+ storage mechanism is comprehensively revealed by in situ/operando spectroscopy, aberration-corrected electron microscopy and density functional theory calculations. We find that incomplete K+/Na+ ion exchange occurs and eventually 0.15 K+ remains as a pillar to stabilize the tunnel structure. The pillar effect substantially maintains the volume change within 3.9%, much smaller than that of K+(Na+) insertion into KTiOPO4(NaTiOPO4) (9.5%; 5%), thus enabling 10,000 cycles. The powder electrode demonstrates comparable capacity and can work efficiently at commercial-level areal capacity of 2.47 mAh cm-2. The quasi-solid-state pouch cell with high safety under extreme abuse also manifests long-term cycling stability. This pillar chemistry will inspire alkali metal ion storage in hosts containing heterogeneous cations.
Collapse
Affiliation(s)
- Wenyi Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Wenjun Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
| | - Chengjun Yi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Jiale Xia
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Jinbing Shang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Weifei Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Zhuo Wang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, P. R. China.
| | - Xiahan Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
| | - Yuanyuan Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jinping Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P. R. China.
| |
Collapse
|
3
|
Wu J, Zheng Y, Zhang P, Rao X, Zhang Z, Wu JM, Wen W. A Rocking-chair Rechargeable Seawater Battery. RESEARCH (WASHINGTON, D.C.) 2024; 7:0461. [PMID: 39193133 PMCID: PMC11347753 DOI: 10.34133/research.0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Seawater batteries are attracting continuous attention because seawater as an electrolyte is inexhaustible, eco-friendly, and free of charge. However, the rechargeable seawater batteries developed nowadays show poor reversibility and short cycle life, due to the very limited electrode materials and complicated yet inappropriate working mechanism. Here, we propose a rechargeable seawater battery that works through a rocking-chair mechanism encountered in commercial lithium ion batteries, enabled by intercalation-type inorganic electrode materials of open-framework-type cathode and Na-ion conducting membrane-type anode. The rechargeable seawater battery achieves a high specific energy of 80.0 Wh/kg at 1,226.9 W/kg and a high specific power of 7,495.0 W/kg at 23.7 Wh/kg. Additionally, it exhibits excellent cycling stability, retaining 66.3% of its capacity over 1,000 cycles. This work represents a promising avenue for developing sustainable aqueous batteries with low costs.
Collapse
Affiliation(s)
- Jialong Wu
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
| | - Yongshuo Zheng
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
| | - Pengfei Zhang
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
| | - Xiaoshuang Rao
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
| | - Zhenyu Zhang
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
- State Key Laboratory of High-performance Precision Manufacturing,
Dalian University of Technology, Dalian 116024, China
| | - Jin-Ming Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Wei Wen
- Collaborative Innovation Center of Ecological Civilization, School of Mechanical and Electrical Engineering,
Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Liu SW, Niu BT, Lin BL, Lin YT, Chen XP, Guo HX, Chen YX, Lin XM. Investigating the Electrochemical Performance of MnFe 2O 4@xC Nanocomposites as Anode Materials for Sodium-Ion Batteries. Molecules 2024; 29:3912. [PMID: 39202992 PMCID: PMC11356791 DOI: 10.3390/molecules29163912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in poor electrochemical performance. Nanosizing and compositing with carbon materials are two effective strategies to overcome these issues. In this study, spherical MnFe2O4@xC nanocomposites composed of MnFe2O4 inner cores and tunable carbon shell thicknesses were successfully prepared and utilized as anode materials for SIBs. It was found that the property of the carbon shell plays a crucial role in tuning the electrochemical performance of MnFe2O4@xC nanocomposites and an appropriate carbon shell thickness (content) leads to the optimal battery performance. Thus, compared to MnFe2O4@1C and MnFe2O4@8C, MnFe2O4@4C nanocomposite exhibits optimal electrochemical performance by releasing a reversible specific capacity of around 308 mAh·g-1 at 0.1 A·g-1 with 93% capacity retention after 100 cycles, 250 mAh·g-1 at 1.0 A g-1 with 73% capacity retention after 300 cycles in a half cell, and around 111 mAh·g-1 at 1.0 C when coupled with a Na3V2(PO4)3 (NVP) cathode in a full SIB cell.
Collapse
Affiliation(s)
- Shi-Wei Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Bai-Tong Niu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Bi-Li Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Yuan-Ting Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Xiao-Ping Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Hong-Xu Guo
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| | - Yan-Xin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Xiu-Mei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China (B.-T.N.); (Y.-T.L.); (X.-P.C.); (H.-X.G.)
| |
Collapse
|
5
|
Bai J, Zhang L, Xue L, Lu B, He K, Liu Y, Guo S. Dual Design on Hierarchically Hollow MoTe 2/C with Ion/Electron Channel Engineering for High-Performance Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38426434 DOI: 10.1021/acsami.3c15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Transition-metal tellurides have been investigated as novel anode materials for application in sodium-ion batteries (SIBs) due to their rich active sites and unique and controllable layered nanostructures. However, the weak structural strength and inferior intercalation/deintercalation kinetics inhibit the development of transition-metal tellurides. In this work, MoTe2/C composites with two different hollow nanostructures are designed and prepared. By adjustment of the precursor structure, MoTe2/C-2 exhibits superior sodium-storage performance because of its uniquely hollow nanostructure with self-assembled 2D flexible nanosheets grown on the external surface. MoTe2/C-2 delivers a higher specific capacity (276 mAh g-1 at 0.1 A g-1 after 300 cycles), much more than MoTe2/C-1 (201 mAh g-1 at 0.1 A g-1 after 300 cycles), and exhibits a long-time cycling performance (131 mAh g-1 at 1 A g-1 after 2000 cycles). The excellent sodium-storage performance derived from the rational structure design is beneficial for shortening the ion paths, facilitating the sodiation/desodiation process, and reinforcing the intrinsic structural stability, thus boosting the reaction kinetics and prolonging the cycling life. Meanwhile, the assembled full-cell maintains 101 mAh g-1 at 0.1 A g-1 after 50 cycles and lights an electric watch. The findings provide several new views for preparation of more transition-metal tellurides with multi-ion/electron migration channel engineering.
Collapse
Affiliation(s)
- Jiaxi Bai
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lifeng Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Liyue Xue
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Bangmei Lu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Kexin He
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Dai H, Xu Y, Wang Y, Cheng F, Wang Q, Fang C, Han J, Chu PK. Entropy-Driven Enhancement of the Conductivity and Phase Purity of Na 4Fe 3(PO 4) 2P 2O 7 as the Superior Cathode in Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7070-7079. [PMID: 38308393 DOI: 10.1021/acsami.3c15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Na4Fe3(PO4)2(P2O7) (NFPP) is regarded as a promising cathode material for sodium-ion batteries (SIBs) owing to its low cost, easy manufacture, environmental purity, high structural stability, unique three-dimensional Na-ion diffusion channels, and appropriate working voltage. However, for NFPP, the low conductivity of electrons and ions limits their capacity and power density. The generation of NaFeP2O7 and NaFePO4 inhibits the diffusion of sodium ions and reduces reversible capacity and rate performance during the manufacturing process in synthesis methods. Herein, we report an entropy-driven approach to enhance the electronic conductivity and, concurrently, phase purity of NFPP as the superior cathode in sodium-ion batteries. This approach was realized via Ti ions substituting different ratios of Fe-occupied sites in the NFPP lattice (denoted as NTFPP-X, T is the Ti in the lattice, X is the ratio of Ti-substitution) with the configurational entropic increment of the lattice structures from 0.68 R to 0.79 R. Specifically, 5% Ti-substituted lattice (NTFPP-0.05) inducing entropic augmentation not only improves the electronic conductivity from 7.1 × 10-2 S/m to 8.6 × 10-2 S/m but also generates the pure-phase of NFPP (suppressing the impure phases of the NaFeP2O7 and NaFePO4) of the lattice structure, which is validated by a series of characterizations, including powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Benefiting from the Ti replacement in the lattice, the optimal NTFPP-0.05 composite shows a high first discharge capacity (118.5 mAh g-1 at 0.1 C), superior rate performance (70.5 mAh g-1 at 10 C), and excellent long cycling life (1200 cycles at 10 C with capacity retention of 86.9%). This research proposes a new entropy-driven approach to improve the electrochemical performance of NFPP and reports a low-cost, ultrastable, and high-rate cathode material of NTFPP-0.05 for SIBs.
Collapse
Affiliation(s)
- Hongmei Dai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yue Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yue Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fangyuan Cheng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qian Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Fang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Ning M, Wen J, Duan Z, Cao XG, Chen J, Chen J, Yang Q, Ye X, Li Z, Zhang H. High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39351-39362. [PMID: 37552834 DOI: 10.1021/acsami.3c07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C-S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g-1), a high ICE (>90%), superior cycling stability (490 mAh g-1 after 1100 cycles at 5 A g-1), and outstanding rate performance (420 mAh g-1 at a high current density of 50 A g-1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.
Collapse
Affiliation(s)
- Meng Ning
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiajun Wen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Duan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China
| | - Xiao Guo Cao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieqi Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingxun Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoji Ye
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China
| | - Zhenghui Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Wang J, Yang X, Yang C, Dai Y, Chen S, Sun X, Huang C, Wu Y, Situ Y, Huang H. Three-Dimensional (3D) Ordered Macroporous Bimetallic (Mn,Fe) Selenide/Carbon Composite with Heterojunction Interface for High-Performance Sodium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40100-40114. [PMID: 37572056 DOI: 10.1021/acsami.3c07951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Transition-metal selenides have captured significant research attention as anode materials for sodium ion batteries (SIBs) due to their high theoretical specific capacities and excellent electronic conductivity. However, volumetric expansion and inferior cycle life still hinder their practical application. Herein, a three-dimensional (3D) ordered macroporous bimetallic (Mn,Fe) selenide modified by a carbon layer (denoted as 3DOM-MnFeSex@C) composite containing a heterojunction interface is fabricated through selenizing a 3D ordered macroporous Mn-based Prussian Blue analogue single crystal. The 3DOM-MnFeSex@C exhibits hierarchically porous architecture with enhanced mass-transfer efficiency; MnSe and FeSe2 particles are encapsulated into macroporous carbon framework, which can significantly promote the electronic conductivity and maintain the structural integrity. The density functional theory calculation indicates that the heterojunction interface between MnSe and FeSe2 has been successfully engineered so that Na+ can be readily adsorbed and rapidly converted, thus promoting the reaction kinetics and extending the cyclic life. As expected, the 3DOM-MnFeSex@C composite delivers excellent rate performance (277.6 mA h g-1 at 10 A g-1), and prolonged cycling life (191.6 mA h g-1 even after 1000 cycles at 2 A g-1) as a sodium storage anode. The sodium storage mechanism of the composite was further investigated by in situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterization techniques.
Collapse
Affiliation(s)
- Jiuwu Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Caini Yang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yi Dai
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Siyao Chen
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xian Sun
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Chenguang Huang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yinping Wu
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yue Situ
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hong Huang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
9
|
Khan R, Wan Z, Ahmad W, Hussain S, Zhu J, Qian D, Wu Z, Saleem MF, Ling M. Breaking Barriers: Binder-Assisted NiS/NiS 2 Heterostructure Anode with High Initial Coulombic Efficiency for Advanced Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37486-37496. [PMID: 37492883 DOI: 10.1021/acsami.3c06896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing sodium-ion batteries (SIBs) with high initial coulombic efficiency (ICE) and long-term cycling stability is crucial to meet energy storage device requirements. Designing anode materials that could exhibit high ICE is a promising strategy to realize enhanced energy density in SIBs. A trifunctional network binder substantially improves the electrochemical performance and ICE, providing excellent mechanical properties and strong adhesion strength. A rationally designed electrode material and binder can achieve high ICE, long cycling performance, and excellent specific capacity. Here, a NiS/NiS2 heterostructure as an anode material and a trifunctional network binder (SA-g-PAM) are designed for SIBs. Unprecedently, the anode comprising of an SA-g-PAM binder achieved the highest ICE of 90.7% and remarkable cycling stability for 19000 cycles at a current density of 10 A g-1 and maintained the specific capacity of 482.3 mAh g-1 even after 19000 cycles. This exciting work provides an alternate direction to the battery industry for developing high-performance electrode materials and binders with high ICE and excellent cycling stability for energy storage devices.
Collapse
Affiliation(s)
- Rashid Khan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Wan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Waqar Ahmad
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shabab Hussain
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianhua Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Dan Qian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhuoying Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Muhammad Farooq Saleem
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Science, Guangzhou 510700, P. R. China
| | - Min Ling
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
10
|
Qin B, Wang M, Liu Z, Yang W, Zhang Y, Fan H. Heterostructure and doping dual strategies engineering of MoS 1.5Se 0.5@VS 2 nanosheets aggregated nano-roses for super sodium-ion batteries. J Colloid Interface Sci 2023; 646:597-605. [PMID: 37210907 DOI: 10.1016/j.jcis.2023.05.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Herein, selenium (Se)-doped MoS1.5Se0.5@VS2 nanosheets aggregated nano-roses were successfully prepared from a simple hydrothermal process and the subsequent selenium doping process. The hetero-interfaces between MoS1.5Se0.5 and VS2 phase can effectively promote the charge transfer. Meanwhile, the different redox potentials of MoS1.5Se0.5 and VS2 alleviate volume expansion during the repeated sodiation/desodiation processes, which improves the electrochemical reaction kinetics and structural stability of electrode material. Besides, Se doping can induce charge reconstruction and improve the conductivity of electrode materials, resulting in improved diffusion reaction kinetics by expanding interlayer spacing and exposing more active sites. When used as anode material for sodium ion batteries (SIBs), the MoS1.5Se0.5@VS2 heterostructure exhibits excellent rate capability and long-term cycling stability with the capacity of 533.9 mAh g-1 at 0.5 A g-1 and a reversible capacity of 424.5 mAh g-1 after 1000 cycles at 5 A g-1, demonstrating potential application as anode material for SIBs.
Collapse
Affiliation(s)
- Binyang Qin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengqi Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Zhang Y, Jin Y, Song Y, Wang H, Jia M. Induced Bimetallic Sulfide Growth with Reduced Graphene Oxide for High-Performance Sodium Storage. J Colloid Interface Sci 2023; 642:554-564. [PMID: 37028162 DOI: 10.1016/j.jcis.2023.03.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Metal sulfide has been considered an ideal sodium-ion battery (SIB) anode material based on its high theoretical capacity. Nevertheless, the inevitable volume expansion during charge-discharge processes can lead to unsatisfying electrochemical properties, which limits its further large-scale application. In this contribution, laminated reduced graphene oxide (rGO) successfully induced the growth of SnCoS4 particles and self-assembled into a nanosheet-structured SnCoS4@rGO composite through a facile solvothermal procedure. The optimized material can provide abundant active sites and facilitate Na+ ion diffusion due to the synergistic interaction between bimetallic sulfides and rGO. As the anode of SIBs, this material maintains a high capacity of 696.05 mAh g-1 at 100 mA g-1 after 100 cycles and a high-rate capability of 427.98 mAh g-1 even at a high current density of 10 A g-1. Our rational design offers valuable inspiration for high-performance SIB anode materials.
Collapse
|