1
|
Zhang S, Yao H, Deng R, Zhan J, Tong T, Wang Y, Yan H, Wang C, Li C, Dong H, Ma S. In situ fabrication of Ni 3S 2/Cu 2S heterojunction on nickel foam as a highly efficient and durable electrocatalyst for overall water splitting. J Colloid Interface Sci 2025; 678:804-818. [PMID: 39312869 DOI: 10.1016/j.jcis.2024.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The development of cost-efficient bifunctional electrocatalysts is significant for overall water splitting. Herein, we report the in situ fabrication of heterogeneous NF/Ni3S2/Cu2S-X (where X refers to Cu2+ concentrations of 50, 75, and 100 mM) on nickel foam (NF) using an electrodeposition-hydrothermal method. The in situ electrodeposited metallic Cu0 layers on the NF conferred higher stability to the resulting bimetallic sulfide of Ni3S2/Cu2S. In alkaline media (1 M KOH), the optimized NF/Ni3S2/Cu2S-75 exhibited ultra-low overpotentials of 108 and 166 mV during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA·cm-2. For overall water splitting, the catalyst showed a significantly low cell voltage of 1.50 V and long stabilization time (≥150h)at15mA·cm-2. Density functional theory calculations revealed that the formation of Ni3S2/Cu2S heterojunction reduced the Gibbs free energy of hydrogen adsorption (ΔGH*) on the S site, thus facilitating H2 generation. This study serves as a guide for tailoring transition metal-based catalysts with enhanced activity and long-term durability, thereby contributing to highly efficient water electrolysis for large-scale hydrogen production.
Collapse
Affiliation(s)
- Siqi Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Ruxin Deng
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiayi Zhan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tian Tong
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yixuan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haiqing Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaonan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai 201203, China.
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Choi Y, Lee JH, Youn DH. A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. Molecules 2024; 29:4975. [PMID: 39459343 PMCID: PMC11510268 DOI: 10.3390/molecules29204975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Efficient and cost-effective catalysts for hydrogen evolution reaction (HER) are essential for large-scale hydrogen production, which is a critical step toward reducing carbon emissions and advancing the global transition to sustainable energy. Nickel sulfide-based catalysts, which exist in various stoichiometries, show promise for HER in alkaline media. However, as single-phase materials, they do not demonstrate superior activity compared to Pt-based catalysts. This review highlights recent strategies to enhance the HER performance of nickel sulfides, including heteroatom doping, heterostructure construction, and vacancy engineering, tailored to their different stoichiometric ratios. The study also examines synthesis methods, characterizations, and their impact on HER performance. Furthermore, it discusses the challenges and limitations of current research and suggests future directions for improvement.
Collapse
Affiliation(s)
| | | | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.C.); (J.-H.L.)
| |
Collapse
|
3
|
Ma J, Zhang T, Li J, Tian Y, Sun C. Superhydrophilic/superaerophobic CoP/CoMoO 4 multi-level hierarchitecture electrocatalyst for urea-assisted hydrogen evolution reaction in alkaline media. J Colloid Interface Sci 2024; 669:43-52. [PMID: 38703581 DOI: 10.1016/j.jcis.2024.04.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Utilizing the thermodynamically favorable urea oxidation reaction instead of the anodic oxygen precipitation reaction is an alternative pathway for the energy-saving hydrogen production. Therefore, it is significant to explore advanced electrocatalysts for both HER and UOR. In this work, a dendritic heteroarchitectures of 2D CoMoO4 nanosheets deposited on 1D CoP nanoneedles (CoP/CoMoO4-CC) was fabricated as bifunctional electrocatalyst. 1D CoP nanostructure with fast charge transport pathways and 2D CoMoO4 nanostructure with large specific surface area and short paths for electron/mass transport. The unique morphology endows the superhydrophilic and superaerophobic properties, allowing for the rapid contact with the reactants and rapid removal of surface-generated gases. As a result, the CoP/CoMoO4-CC shows efficient bifunctional activity. This work offers a new avenue to rationally design bifunctional electrocatalysts for large-scale practical hydrogen production.
Collapse
Affiliation(s)
- Jingwen Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tianai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Junbin Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ying Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
4
|
Yan Y, Wu W, Yang Y, Xu T, Li X. Stepwise Construction of MoS 2@CoAl-LDH/NF 3D Core-Shell Nanoarrays with High Hole Mobility for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32434-32444. [PMID: 38861695 DOI: 10.1021/acsami.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Supercapacitors (SCs) have received widespread attention as excellent energy storage devices, and the design of multicomponent electrode materials and the construction of ingenious structures are the keys to enhancing the performance of SCs. In this paper, MoS2 nanorods were used as the carrier structure to induce the anchoring of CoAl-LDH nanosheets and grow on the surface of nickel foam (NF) in situ, thus obtaining a uniformly distributed MoS2 nanorod@CoAl-LDH nanosheet core-shell nanoarray material (MoS2@CoAl-LDH/NF). On the one hand, the nanorod-structured MoS2 as the core provides high conductivity and support, accelerates electron transfer, and avoids agglomeration of CoAl-LDH nanosheets. On the other hand, CoAl-LDH nanosheet arrays have abundant interfacially active sites, which accelerate the electrolyte penetration and enhance the electrochemical activity. The synergistic effect of the two components and the unique core-shell nanostructure give MoS2@CoAl-LDH/NF a high capacity (14,888.8 mF cm-2 at 2 mA cm-2) and long-term cycling performance (104.4% retention after 5000 charge/discharge cycles). The integrated MoS2@CoAl-LDH/NF//AC device boasts a voltage range spanning from 0 to 1.5 V, achieving a peak energy density of 0.19 mW h cm-2 at 1.5 mW cm-2. Impressively, it maintains a capacitance retention rate of 84.6% after enduring 10,000 cycles, demonstrating exceptional durability and stability.
Collapse
Affiliation(s)
- Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yang Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of High Performance Film Capacitors and Materials, Wuhu, Anhui 241000, China
| |
Collapse
|
5
|
Mahadik S, Surendran S, Moon DJ, Kim JY, Janani G, Jesudass SC, Veeramani K, Choi H, Shanmugapriya S, Kim IG, Jung P, Park YI, Heo J, Kim TH, Hong K, Sim U. Structurally engineered highly efficient electrocatalytic performance of 3-dimensional Mo/Ni chalcogenides for boosting overall water splitting performance. CHEMOSPHERE 2024; 352:141233. [PMID: 38266882 DOI: 10.1016/j.chemosphere.2024.141233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Hydrogen production from water splitting combined with renewable electricity can provide a viable solution to the energy crisis. A novel MoS2/NiS2/Ni3S4 heterostructure is designed as a bifunctional electrocatalyst by facile hydrothermal method to demonstrate excellent electrocatalytic performance towards overall water splitting applications. MoS2/NiS2/Ni3S4 heterostructure necessitates a low overpotential of 81 mV and 210 mV to attain a current density of 10 mA cm-2 during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Consequently, the MoS2/NiS2/Ni3S4 heterostructure-based electrolyzer shows a low cell voltage of 1.54 V at 10 mA cm-2. The present work highlights the significance of the heterostructure configuration of transition metal sulfide-based electrocatalysts for electrochemical overall water splitting applications.
Collapse
Affiliation(s)
- Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Naju, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Naju, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea
| | - Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Naju, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Naju, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Naju, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Ma J, Wang J, Li J, Tian Y, Zhang T. A Green Synthesis Strategy for Cobalt Phosphide Deposited on N, P Co-Doped Graphene for Efficient Hydrogen Evolution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6119. [PMID: 37763395 PMCID: PMC10532637 DOI: 10.3390/ma16186119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/29/2023]
Abstract
The exploitation of electrocatalysts with high activity and durability for the hydrogen evolution reaction is significant but also challenging for future energy systems. Transition metal phosphides (TMPs) have attracted a lot of attention due to their effective activity for the hydrogen evolution reaction, but the complicated preparation of metal phosphides remains a bottleneck. In this study, a green fabrication method is designed and proposed to construct N, P co-doped graphene (NPG)-supported cobalt phosphide (Co2P) nanoparticles by using DNA as both N and P sources. Thanks to the synergistic effect of NPG and Co2P, the Co2P/NPG shows effective activity with a small overpotential of 144 mV and a low Tafel slope of 72 mV dec-1 for the hydrogen evolution reaction. This study describes a successful green synthesis strategy for the preparation of high-performance TMPs.
Collapse
Affiliation(s)
- Jingwen Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (J.L.); (Y.T.); (T.Z.)
| | - Jun Wang
- PetroChina Planning and Engineering Institute, Beijing 100083, China;
| | - Junbin Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (J.L.); (Y.T.); (T.Z.)
| | - Ying Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (J.L.); (Y.T.); (T.Z.)
| | - Tianai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (J.L.); (Y.T.); (T.Z.)
| |
Collapse
|
7
|
Wang Y, Li X, Fan Y, Wu J, Wu X, Xia L, Yao W, Wu Q, Min Y, Xu Q. Flower ball cathode assembled from Cu doped Co 3S 4/Ni 3S 2 ultrathin nanosheets in a photocatalytic fuel cell for efficient photoelectrochemical rifampicin purification and simultaneous electricity generation based on a CuO QDs/TiO 2/WO 3 photoanode. RSC Adv 2023; 13:15640-15650. [PMID: 37228684 PMCID: PMC10204701 DOI: 10.1039/d3ra02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Herein, an efficient CuO QDs/TiO2/WO3 photoanode and a Cu doped Co3S4/Ni3S2 cathode were successfully synthesized. The optimized CuO QDs/TiO2/WO3 photoanode achieved a photocurrent density of 1.93 mA cm-2 at 1.23 vs. RHE, which was 2.27 times that of a WO3 photoanode. The CuO QDs/TiO2/WO3-buried junction silicon (BJS) photoanode was coupled with the Cu doped Co3S4/Ni3S2 cathode to construct a novel photocatalytic fuel cell (PFC) system. The as-established PFC system showed a high rifampicin (RFP) removal ratio of 93.4% after 90 min and maximum power output of 0.50 mW cm-2. Quenching tests and EPR spectra demonstrated that ˙OH, ˙O2- and 1O2 were the main reactive oxygen species in the system. This work provides a possibility to construct a more efficient PFC system for environmental protection and energy recovery in the future.
Collapse
Affiliation(s)
- Yuling Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
| | - Xiaolong Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
| | - Yankun Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
| | - Jun Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
| | - Xin Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
| | - Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power Shanghai 200090 China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power No. 2588 Changyang Road Shanghai 200090 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| |
Collapse
|
8
|
Zhang Q, Lian K, Liu Q, Qi G, Zhang S, Luo J, Liu X. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J Colloid Interface Sci 2023; 646:844-854. [PMID: 37235930 DOI: 10.1016/j.jcis.2023.05.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
High entropy alloys (HEAs) are those metallic materials that consist of five or more elements. Compared with conventional alloys, they have much more catalytic active sites due to unique structural characteristics such as high entropy effect and lattice distortion, endowing them with promising applications in the region of hydrolysis catalysts. Herein, we successfully loaded high-entropy alloys onto carbon nanotubes (FeNiCoMnRu@CNT) by hydrothermal means. It exhibits excellent HER and OER properties in alkaline seawater. To accomplish two-electrode total water splitting when constructed into Zn air cells, it only needed 1.6 V, and the timing voltage curve showed a steady current density of 10 mA cm-2 during constant electrolysis for more than 30 h in alkaline seawater. The remarkably high HER and OER activity of FeNiCoMnRu@CNT HEAs NPS indicates the potentially broad application prospect of HEAs for Zn air battery.
Collapse
Affiliation(s)
- Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gaocan Qi
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|