1
|
Kocak M, Can Osmanogullari S, Soyler D, Arın Ozturmen B, Bekircan O, Biyiklioglu Z, Soylemez S. Synthesis and comparison of the performance of two different water-soluble phthalocyanine based electrochemical biosensor. Bioelectrochemistry 2024; 160:108788. [PMID: 39106731 DOI: 10.1016/j.bioelechem.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Herein, a comparative study between novel water-soluble phthalocyanine-based biosensors was performed for the application of glucose sensing. For this purpose, two different copper (II) and manganese (III) phthalocyanines and their water-soluble derivatives were synthesized, and then their role as a supporting material for enzyme immobilization was evaluated by comparing their sensor performances. Two different phthalocyanine (AP-OH2-MnQ (MnPc) and AP-OH2-CuQ (CuPc)) were tested using electrochemical biosensor with immobilized glucose oxidase (GOx). To the best of our knowledge, the related water-soluble phthalocyanine-based glucose biosensors were attempted for the first time, and the developed approach resulted in improved biosensor characteristics. The constructed biosensors GE/MnPc/GOx and GE/CuPc/GOx showed good linearity between 0.003-1.0 mM and 0.05-0.4 mM, respectively. The limit of detection was estimated at 0.0026 mM for the GE/MnPc/GOx and 0.019 mM for the GE/CuPc/GOx. KMapp and sensitivity values were also calculated as 0.026 mM and 175.043 µAmM-1 cm-2 for the GE/MnPc/GOx biosensor and 0.178 mM and 117.478 µAmM-1 cm-2 for the GE/CuPc/GOx biosensor. Moreover, the fabricated biosensors were successfully tested to detect glucose levels in beverages with high recovery results. The present study shows that the proposed water-soluble phthalocyanines could be a good alternative for quick and cheap glucose sensing with improved analytical characteristics.
Collapse
Affiliation(s)
- Merve Kocak
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Sila Can Osmanogullari
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Berivan Arın Ozturmen
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Saniye Soylemez
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey.
| |
Collapse
|
2
|
Guo J, Ma Y, Han T, Yang J, Miao P. Magnetic MOF composites for the electrocatalysis and biosensing of dopamine released from living cells. J Mater Chem B 2024; 12:8181-8188. [PMID: 39081063 DOI: 10.1039/d4tb00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) with fit ligands and metals can be integrated into electrochemical biosensors for the detection of various biomolecules. In this study, we have synthesized novel magnetic MOF composites as electrocatalysts and constructed a novel biosensor for electrochemical detection of dopamine. The composites named Fe3O4@ZIF-8@AuNPs-COOH are synthesized through layer-by-layer assembly. They exhibit excellent stability and cooperative catalytic activity. In addition, green recycling is readily achieved through magnetizing/demagnetizing the electrode. The large specific surface area and ordered porous structures of the magnetic MOFs ensure good dispersion of gold nanoparticles, while the carboxyl group efficiently shields other redox-active interfering substances. The proposed electrochemical biosensor accomplishes the sensitive detection of dopamine in human serums and living cells. This study broadens the application of MOFs in electrochemical biosensing, validates the feasibility of biosensors for in vivo analysis, and provides new insights into green sensing.
Collapse
Affiliation(s)
- Jiarong Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tongyu Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China.
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
3
|
Wang Z, Guo L, Tian J, Han Y, Zhai D, Cui L, Zhang P, Zhang X, Yang S, Zhang L. Aversatile MOF as an electrochemical/fluorescence/colorimetric signal probe for the tri-modal detection of MMP-9 secretion in the extracellular matrix to identify the efficacy of chemotherapeutic drugs. Anal Chim Acta 2024; 1315:342798. [PMID: 38879217 DOI: 10.1016/j.aca.2024.342798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.
Collapse
Affiliation(s)
- Zihua Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lulu Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Jing Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Yue Han
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Dandan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Lan Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Pengshuai Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Xiwei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
4
|
Xie H, Wang L, Yu X, Zhou T, Wang M, Yang J, Gao T, Li G. Synthesis of a COF-on-MOF hybrid nanomaterial for enhanced colorimetric biosensing. Talanta 2024; 274:126071. [PMID: 38604045 DOI: 10.1016/j.talanta.2024.126071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The construction of hybrid materials is significant for the exploration of functionalities in colorimetric biosensing due to its structural designability and synergy effects. In this work, a COF-on-MOF hybrid nanomaterial has been newly synthesized for colorimetric biosensing. Experimental results reveal that on-surface synthesis of COF on MOF brings nanoscale proximity between COF and MOF, which exhibits more than two folds of peroxidase-like activity as compared to single Fe-MOF. Therefore, by using the MCA@Fe-MOF nanomaterial with the assist of a specific acetyl-peptide, MCA@Fe-MOF can serve as an efficient signal reporter for colorimetric assay of histone deacetylase (HDAC), and the limit of detection (LOD) can be as low as 0.261 nM. Looking forward, the demand for diverse and promising COF-on-MOF nanomaterials with varied functionalities is anticipated, propelling further exploration of their role in colorimetric biosensing.
Collapse
Affiliation(s)
- Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaomeng Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Haiyang L, Guantong L, Nan Z, Zhanye Y, Xinge J, Bing Z, Tian Y. Ag-carbon dots with peroxidase-like activity for colorimetric and SERS dual mode detection of glucose and glutathione. Talanta 2024; 273:125898. [PMID: 38479032 DOI: 10.1016/j.talanta.2024.125898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Currently, nanozymes have made important research progress in the fields of catalysis, biosensing and tumor therapy, but most of nanozymes sensing systems are single-mode detection, which are easily affected by environment and operation, so it is crucial to construct nanozymes sensing system with dual-signal detection to obtain a more stable and reliable performance. In this paper, Ag-carbon dots (Ag-CDs) bifunctional nanomaterials were synthesized using carbon dots as reducing agent and protective agent by a facile and green one-step method. A simple and sensitive colorimetric-SERS dual-mode sensing platform was constructed for the detection of glucose and glutathione(GSH) in body fluids by taking advantage of good peroxidase-like and SERS activities of Ag-CDs. Ag-CDs catalyzes H2O2 to hydroxyl radicals(•OH), which oxidized TMB to form ox-TMB blue solution with characteristic absorption peak at 652 nm and Raman characteristic peak at 1607 cm-1. Ag-CDs sensing method exhibited high performance for glucose and GSH with detection limits for colorimetric and SERS as low as 11.30 μM and 3.54 μM, 0.38 μM and 0.24 μM respectively (S/N = 3). In addition, Ag-CDs have good stability and uniformity, ensuring long-term applicability of catalytic system. This colorimetric-SERS dual-mode sensing platform can be used for the determination of glucose and GSH in saliva and urine, and has the advantages of simple, low cost, rapid, and high accuracy, which has a potential application prospect in biosensor and medical research.
Collapse
Affiliation(s)
- Lv Haiyang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China
| | - Liu Guantong
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China
| | - Zhang Nan
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China
| | - Yang Zhanye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China
| | - Jv Xinge
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China
| | - Zhao Bing
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Teng Q, Zhou K, Yu K, Zhang X, Li Z, Wang H, Zhu C, Wang Z, Dai Z. Principal component analysis-assisted zirconium-based metal-organic frameworks/DNA biosensor for the analysis of various phosphates. Talanta 2024; 271:125733. [PMID: 38309111 DOI: 10.1016/j.talanta.2024.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Considering the diversity of phosphates and their pivotal roles in physiological processes, detection of various phosphates related to their metabolism is urgent but challenging. Herein, we design a biosensor with zirconium-based MOFs (Zr-MOFs) and fluorophore-modified single-stranded DNA (F-ssDNA) for the analysis of phosphates. Relying on the interaction between Zr clusters and phosphate backbone, F-ssDNA is anchored on the surface of Zr-MOFs, inducing fluorescence resonance energy transfer (FRET) and subsequently quenching the fluorescence of F-ssDNA. Meanwhile, phosphates with different numbers of phosphate groups, molecular structures and coordination environments are able to adjust the FRET between Zr-MOFs and F-ssDNA via a site-occupying effect, recovering the fluorescence of F-ssDNA in distinct cases, which may result in diverse fluorescence signals. Consequently, seventeen phosphates and four phosphate mixtures are discriminated with the assistance of principal component analysis. These results provide new insight into the application of Zr-MOFs and broaden the path for the development of analytical methods for phosphates.
Collapse
Affiliation(s)
- Qiuyi Teng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kunkun Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kaihua Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyi Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zijun Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huafeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengzhi Zhu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
7
|
Wang J, Xiong Q, Zhang S, Han H, Ma Z. Quantification of Glycated Hemoglobin in Total Hemoglobin by a Simultaneous Dual-Signal Acquisition Approach. ACS Sens 2024; 9:2141-2148. [PMID: 38578241 DOI: 10.1021/acssensors.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Qichen Xiong
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuli Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
8
|
Zhou F, He D, Ren G, Yarahmadi H. In situ and bio-green synthesis of silver nanoparticles immobilized on zeolite as a recyclable catalyst for the degradation of OPDs. Sci Rep 2024; 14:1143. [PMID: 38212519 PMCID: PMC10784553 DOI: 10.1038/s41598-024-51271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, silver nanoparticles (Ag-NPs) were synthesized using a green and biologically inspired approach by utilizing reducing compounds from Thyme plant leaves. Zeolite was used to immobilize the synthesized Ag-NPs (Ag@Z). The modified Zeolite served as a catalyst for the reduction reaction of various organic pollutant dyes (OPDs) including 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), methylene blue (MB), and methyl orange (MO) with sodium borohydride. The degradation of OPDs was monitored by measuring changes in their maximum absorption wavelength intensity. A thorough examination of multiple parameters (catalyst, silver and sodium borohydride dosage, yield degradation, and reaction time) was carried out to identify the optimized conditions for the degradation of OPDs. The results showed that the Ag@Z catalyst achieved an efficiency of over 93% in less than 10 min for the degradation of OPDs. The recoverability and reusability of the catalyst were examined, revealing a partial loss in efficiency after four recovery stages. Structural analysis using XRD, SEM, and TEM techniques confirmed the characteristics and morphology of the synthesized catalyst.
Collapse
Affiliation(s)
- Fujiang Zhou
- College of Science, Qiongtai Normal University, Haikou, 571100, Hainan, China
| | - Danfeng He
- College of Science, Qiongtai Normal University, Haikou, 571100, Hainan, China.
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Hossein Yarahmadi
- Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran.
| |
Collapse
|
9
|
Jia M, Xu F, Zhai F, Yu X, Du M. An all-in-one portable colorimetric detection platform for sensitive detection of bisphenol A based on target-mediated CeO 2@ZIF-8/Apt biocomposites. J Colloid Interface Sci 2024; 653:1805-1816. [PMID: 37845127 DOI: 10.1016/j.jcis.2023.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
BPA aptamers functionalized cerium oxide nanoparticles encapsulated in zeolitic imidazolate framework-8 (CeO2@ZIF-8/Apt) were developed to fabricate an all-in-one portable platform for on-site quantitative detection of BPA. By combining biocomposites with a 3,3',5,5'-tetramethylbenzidine (TMB)-based sodium alginate (SA) hydrogel and smartphone-based RGB analysis, highly sensitive and convenient monitoring of BPA was achieved. CeO2@ZIF-8 composites were constructed using a novel surfactant-modified concentration-controlled synthesis strategy. After being functionalized with BPA aptamers, CeO2@ZIF-8/Apt biocomposites were used as target-response colorimetric probes for target recognition and signal transduction. The oxidase-like activity of CeO2@ZIF-8 was effectively sealed by BPA aptamers and controllably released in a concentration-dependent manner through aptamer-BPA reactions. Utilizing SA hydrogels containing TMB in the caps, a one-step sample addition and one-pot detection can be conveniently achieved and reliably quantified by smartphone-based RGB analysis in an instrument-free way. The detection range of this portable detection platform is 50 pg/mL to 500 ng/mL with limit of detection calculated as 34.88 pg/mL, comparable to that of conventional detection in the solution system (4.57 pg/mL). The recoveries in tap water, apple juice, and milk ranged from 91.02 % and 106.75 %. This work contributes new insights into the design of all-in-one detection platforms for contaminants monitoring in resource-constrained regions.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| | - Fupei Xu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Fei Zhai
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoying Yu
- Inspection and Testing Center of Rushan, Weihai 264500, China
| | - Meixia Du
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Gong Y, Han H, Ma Z. Faraday cage-type self-powered immunosensor based on hybrid enzymatic biofuel cell. Anal Bioanal Chem 2023; 415:7223-7233. [PMID: 37870585 DOI: 10.1007/s00216-023-04990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Self-powered immunosensors (SPIs) based on enzymatic biofuel cell (EBFC) have low sensitivity and poor stability due to the high impedance of the immune sandwich and the vulnerability of enzymes to environmental factors. Here, we applied the Faraday cage-type sensing mode on a hybrid biofuel cell (HBFC)-based SPI for the first time, which exhibited high sensitivity and stability. Cytokeratin 19 fragment (CYFRA 21-1) was used as a model analyte. Au nanoparticle-reduced graphene oxide (Au-rGO) composite was used as the supporting matrix for immunoprobe immobilized with detection antibody and glucose dehydrogenase (GDH), also the builder for Faraday cage structure on the bioanode in the presence of antigen. After the combination of immunoprobe, antigen, and the antibody on the bioanode, the Faraday cage was constructed in case the AuNP-rGO was applied as a conductive cage for electron transfer from GDH to the bioanode without passing through the poorly conductive protein. With the assistance of the Faraday cage structure, the impedance of the bioanode decreased significantly from 4000 to 300 Ω, representing a decline of over 90%. The sensitivity of the SPI, defined as the changes of open circuit voltage (OCV) per unit concentration of the CYFRA 21-1, was 68 mV [log (ng mL-1)]-1. In addition, Fe-N-C was used as an inorganic cathode material to replace enzyme for oxygen reduction reaction (ORR), which endowed the sensor with 4-week long-term stability. This work demonstrates a novel sensing platform with high sensitivity and stability, bringing the concept of hybrid biofuel cell-based self-powered sensor.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|